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W. Beiglböck, Heidelberg, Germany
W. Domcke, Garching, Germany
B.-G. Englert, Singapore
U. Frisch, Nice, France
P. Hänggi, Augsburg, Germany
G. Hasinger, Garching, Germany
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Preface

This book contains a selection of lectures from the first CFN Summer School on
Functional Nanostructures which took place from September 24th to September
27th, 2003 in Bad Herrenalb in the Black Forest of Germany. The DFG-funded
CFN, or Center for Functional Nanostructures, was founded in July 2001 at the
Universität Karlsruhe (TH) and the Forschungszentrum Karlsruhe. Additional
funding comes from the State of Baden-Württemberg and from the home in-
stitutions, Universität and Forschungszentrum. The mission of the CFN is to
investigate nanoscale functional materials within the following broad research
areas:

A Nanophotonics
B Nanoelectronics
C Molecular Nanostructures
D Nanostructured Materials

The CFN is made up of a wide range of research groups from 15 different
Institutes in Karlsruhe bringing a variety of scientific backgrounds together. The
Center thus provides a melting pot where various talents can be combined to
address the problems associated with creating functional nanoscale materials.
At the same time, the members of the Center are acutely aware of the need to
develop a common language to facilitate communication amongst the various di-
sciplines, and thus the idea of holding Summer Schools to bring groups across the
four research areas together evolved. The remit of the Summer Schools is to allow
members of the CFN and external participants to exchange ideas and explain
research methods and strategies through a series of lectures designed both to
introduce unfamiliar concepts and discuss the benefits and problems associated
with various research methods including many which are highly specialised.

Chapters 1–4 of these Lecture Notes are devoted to research area A (Nano-
photonics), Chaps. 5–9 to B (Nanoelectronics) while the last two chapters give
a flavor of research areas C (Molecular Nanostructures) and D (Nanostructured
Materials).

The lecture notes we have brought together here represent a selection of the
presentations made at the Summer School in 2003 and are designed to provide
a useful starting point for those interested in learning more about this rapidly
developing area of science. It is hoped that they will not only provide a use-
ful working text, but also arouse interest in our activities in Karlsruhe within
the CFN.



VI Preface

We would like to take this opportunity to thank all the authors who have
contributed to this volume for their valuable input as well as all the participants
at the Summer School for helping to make this interdisciplinary venture such a
success.

Karlsruhe, Kurt Busch
March 2004 Annie Powell

Christian Röthig
Gerd Schön
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Wolfgang Morgenroth, Hans-Georg Meyer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2 Importance of Etching Depths in 2D Planar PCs . . . . . . . . . . . . . . . . . . . 72

2.1 Simulation of Varied Etching Depths . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.2 Experimental Characterization of PCs

with Different Etching Depths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3 Trimming of 2D PC Optical Spectra by UV Photobleaching . . . . . . . . . 76

3.1 3D Simulations of Bleached 2D PCs . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2 Experimental Bleaching of Regular 2D PCs . . . . . . . . . . . . . . . . . . . 78
3.3 Experimental Bleaching of 2D PC Line Defect Resonators . . . . . . 80

4 Photonic Crystal Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.1 Straight Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Photonic Crystal Waveguide Bends . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Single-Electron Devices
Jürgen Weis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2 Single-Electron Charging Energy and Coulomb Blockade Effect . . . . . . 87
3 Concept of a Single-Electron Transistor (SET) . . . . . . . . . . . . . . . . . . . . . 90
4 Examples for the Realization of Single-Electron Transistors . . . . . . . . . 94

4.1 Single-Electron Transistor Made from Metal . . . . . . . . . . . . . . . . . . . 94
4.2 Single-Electron Transistor Containing a Quantum Dot

as Island . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5 Quantum Dot as an Interacting N -Electron System:

An Artifical Atom with Tunable Properties . . . . . . . . . . . . . . . . . . . . . . . . 97
6 Transport Spectroscopy on Quantum Dot Systems . . . . . . . . . . . . . . . . . . 100
7 Summarizing the Conditions for Coulomb Blockade . . . . . . . . . . . . . . . . . 103
8 Some Applications of Single-Electron Transistors . . . . . . . . . . . . . . . . . . . 104

8.1 SET as a Voltage Signal Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.2 SET as an Electrometer Sensitive to a Fraction

of the Elementary Charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.3 SET as an Electrostatic Sensor

in a Scanning Probe Microscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.4 SET as a Current Rectifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

9 The SET for Very-Large Scale Integration (VLSI)
of Digital Circuits? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



Contents IX

10 Charge-Stability Diagram of Two-Island Devices . . . . . . . . . . . . . . . . . . . 109
11 Single-Electron Turnstile and Single-Electron Pump . . . . . . . . . . . . . . . . 110
12 Single-Electron Devices as Primary Thermometer . . . . . . . . . . . . . . . . . . 112
13 Breakdown of the Single-Electron Tunneling Picture . . . . . . . . . . . . . . . . 113
14 Kondo Effect in Single Quantum Dot Systems . . . . . . . . . . . . . . . . . . . . . 114
15 Two Electrostatically Coupled Single-Electron Transistors:

More than the Sum of Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Full Counting Statistics in Quantum Contacts
Wolfgang Belzig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
1.2 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

2 Full Counting Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
2.1 Charge Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
2.2 Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
2.3 Special Distributions (Two Terminals) . . . . . . . . . . . . . . . . . . . . . . . . 126
2.4 Special Distributions (Many Terminals) . . . . . . . . . . . . . . . . . . . . . . . 126

3 Theoretical Approach to Full Counting Statistics . . . . . . . . . . . . . . . . . . . 127
3.1 General Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.2 Current Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.3 Keldysh-Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.4 A Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.5 Summary of the Theoretical Approach. . . . . . . . . . . . . . . . . . . . . . . . 129

4 Two-Terminal Contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.1 Tunnel Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.2 General CGF for Quantum Contacts . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.3 Normal Contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.4 SN-Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.5 Superconducting Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5 Quantum Noise in Diffusive SN-Structures . . . . . . . . . . . . . . . . . . . . . . . . . 134
6 Multi-terminal Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.1 Circuit Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.2 Multi-tunnel Junction Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.3 Normal Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.4 SN-Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Quantum Dots Attached to Ferromagnetic Leads:
Exchange Field, Spin Precession, and Kondo Effect
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1 Introduction

The past decades have seen dramatic advances in microstructuring technology.
Today, a wide variety of structures with feature sizes ranging from a couple
of micrometers all the way down to a few tens of nanometers are routinely
fabricated with precision better than ten nanometers. In addition to these im-
provements in fabrication quality, the variety of materials that can be processed
is growing continuously. These advances in materials science are paralleled by
the development of novel and improvement of existing laser sources that allows
one to generate electromagnetic fields with previously unattainable energy den-
sities as well as temporal and spatial coherences. Bringing together advanced
microfabrication technologies with sophisticated laser systems lies at the heart
of Nano-Photonics: The control over the flow of light on length scales of the
wavelength of light itself through microstructured optical materials (“photonic
metamaterials”) with carefully designed properties.

A particularly prominent class of metamaterials are the so-called Photonic
Crystals (PCs) which consist of a microfabricated array of dielectric materials
in two or three spatial dimensions. The resulting combination of microscopic
scattering resonances from individual elements of the periodic array and Bragg
scattering from the corresponding lattice is very similar to the propagation of
electron waves in electronic crystals and, as a result, leads to the formation of
an energy bandstructure for electromagnetic waves. The most dramatic modi-
fication of the photonic dispersion relation in these systems occurs when the
photonic bandstructure of suitably engineered PCs exhibits frequency ranges
over which the light propagation is forbidden irrespective of the direction of pro-
pagation [1,2]. The corresponding subclass of PCs that exhibit such a Photonic
Band Gap (PBG) are commonly referred to as Photonic Band Gap materials
and may be regarded as a “Semiconductor for Light” [3]. In fact, this analogy
of PBG materials to electronic semiconducting materials may be reaching very
far and the current state of PBG research suggests that this field is at a stage
comparable to the early years of semiconductor technology shortly before the in-
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vention of the solid state electronic transistor. If this analogy continues to hold,
one may find PBG materials at the heart of a 21st century revolution in optical
technologies similar to the revolution in electronics we have witnessed over the
latter half of the 20th century.

In this chapter, we want to outline how the vast knowledge about electron
propagation in crystalline solids may be employed to determine the optical pro-
perties of PCs in general and of PBG materials in particular. In Sect. 2, we intro-
duce photonic bandstructure computations as the central tool for obtaining the
photonic dispersion relation, the corresponding eigenmodes (Bloch functions),
and related physical quantities such as group velocities, group velocity disper-
sion as well as total and local density of states. In Sect. 3, we discuss how the
existence of a PBG may be utilized for the design of (linear) waveguiding struc-
tures through the deliberate incorporation of defects. In addition, we outline the
qualitatively new physics that may arise in the case of nonlinear and quantum
optical phenomena in PBG materials. Finally, in Sect. 4, we discuss a novel ap-
proach to obtain a fully quantitative lattice model for PCs using the solid-state
theoretical concept of Wannier functions that allow us to efficiently carry out
accurate simulations of PC-based devices. We employ this approach to develop
novel concepts and design for functional elements based on the infiltration of
individual pores in two-dimensional PBG materials.

2 Photonic Bandstructure Computation

Photonic bandstructure computations determine the dispersion relation of infi-
nitely extended defect-free PCs. In addition, they allow us to design PCs that
exhibit PBGs and to accurately interpret measurements on PC samples. As a
consequence, photonic bandstructure calculations represent an important pre-
dictive as well as interpretative basis for PC research and, therefore, lie at the
heart of theoretical investigations of PCs. For instance, the first convincing evi-
dence for the very existence of PBGs has come from the seminal theoretical work
of the Iowa State group [4], where it has been reported that certain structures
with diamond symmetry exhibit complete three-dimensional (3D) PBGs.

2.1 Photonic Bandstructure and Bloch Functions

More specifically, the goal of photonic bandstructure computations is to find the
eigenfrequencies and associated eigenmodes of the wave equation for the perfect
PC, i.e., for an infinitely extended periodic array of dielectric material. For the
simplicity of presentation, we restrict ourselves in the remainder of this chapter
to the case of TM-polarized radiation propagating in the plane of periodicity
(x, y)-plane of two-dimensional (2D) PCs. In this case, the wave equation in
the frequency domain (harmonic time dependence) for the z-component of the
electric field reads

1
εp(r)

(
∂2

x + ∂2
y

)
E(r) +

ω2

c2
E(r) = 0 . (1)



Solid State Theory Meets Photonics 3

Here c denotes the vacuum speed of light and r = (x, y) denotes a two-dimen-
sional position vector. The dielectric constant εp(r) ≡ εp(r + R) is periodic
with respect to the set R = {n1a1 + n2a2; (n1, n2) ∈ Z2} of lattice vectors R
generated by the primitive translations ai, i = 1, 2 that describe the structure of
the PC. Equation (1) represents a differential equation with periodic coefficients
and, therefore, its solutions obey the Bloch-Floquet theorem

Ek(r + ai) = eikai Ek(r) , (2)

where i = 1, 2. The wave vector k ∈ 1st BZ that labels the solution is a vector
of the first Brillouin zone (BZ) known as the crystal momentum. As a result of
this so-called reduced zone scheme, the photonic bandstructure acquires a multi-
branch nature that is associated with the backfolding of the dispersion relation
into the 1st BZ. This introduces a discrete index n, the so-called band index,
that enumerates the distinct eigenfrequencies and eigenfunctions at the same
wave vector k [5]. Furthermore, (2) suggests that the Bloch function Enk(r) for
band n and wave vector k can be written in a form

Enk(r) = eikr unk(r) , (3)

representing a plane wave that is modulated by a lattice periodic function
nk(r) [5].

A straightforward way of solving (1) is to expand all the periodic functions
into a Fourier series over the reciprocal lattice G, thereby transforming the dif-
ferential equation into an infinite matrix eigenvalue problem, which may be sui-
tably truncated and solved numerically.

For instance, for a PC consisting of pores (radius r, dielectric constant εb) in
a background material (dielectric constant εb), the periodic dielectric constant
εp(r) may be written as

1
εp(r)

=
1
εa

+
(

1
εb

− 1
εa

)∑

R

S(r − R) (4)

=
∑

G

ηG eiG·r , (5)

where S(r − R) takes on the value one if |r| ≤ r, and is zero elsewhere. The
Fourier coefficients ηG are given by

ηG =
1

VWSC

∫

WSC

d2r
1

εp(r)
e−iG·r . (6)

Here, we designate the volume of the Wigner-Seitz cell (WSC) by V . Similarly,
following the Bloch-Floquet theorem we expand E(r) for a given wave vector k
as

Ek(r) =
∑

G

Ak
G ei(k+G)·r . (7)
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Inserting these expansions, (7) and (4) into (1) and defining the coefficients
Bk

G ≡ |k + G|Ak
G, yields a symmetric eigenvalue problem:

∑

G′
|k + G||k + G′| ηG−G′ Bk

G′ =
ω2

k

c2
Bk

G . (8)

The reciprocal lattice sum is then truncated in order to obtain a numerical
solution. In our numerical calculations convergence was established by increasing
the number of reciprocal lattice vectors used to truncate (8) until the final result
was independent of the truncation. We found that using of the order of thousand
reciprocal lattice vectors closest to the origin yields a converged band structure
for the dielectric contrasts we have considered. For future reference we note that,
once the eigenfrequencies ωnk and associated eigenvectors Bnk

G (or equivalently
Ank

G ) have been found, the eigenfunctions, the so-called Bloch functions, can be
recovered using (7). Further Details of this plane wave method (PWM) for isotro-
pic systems can be found, for instance, in [4,6] and for anisotropic systems in [7].

While the PWM provides a straightforward approach to computing the band-
structure of PCs, it also exhibits a number of shortcomings such as slow conver-
gence associated with the truncation of Fourier series in the presence of discon-
tinuous changes in the dielectric constants. In particular, this slow convergence
makes the accurate calculation of Bloch functions a formidable and resource-
consuming task. Therefore, we have recently developed an efficient real space
approach to computing photonic bandstructures [8]. Within this approach, the
wave equation, (1), is discretized in a single unit cell in real space (defined
through the set of space points r = r1a1 + r2a2 with r1, r2 ∈ [−1/2, 1/2]), lea-
ding to a sparse matrix problem. The Bloch-Floquet theorem, (2), provides the
boundary condition for the elliptic partial differential equation (1). In addition,
the eigenvalue is treated as an additional unknown for which the normalization
of the Bloch functions provides the additional equation needed for obtaining
a well-defined problem. The solution of this algebraic problem is obtained by
employing Multi-Grid (MG) methods which guarantee an efficient solution by
taking full advantage of the smoothness of the photonic Bloch functions [8,9].
Even for the case of a naive finite difference discretization, the MG-approach
easily outperforms the PWM and leads to a substantial reduction in CPU time.
For instance, in the present case of 2D systems for which the Bloch functions are
required we save one order of magnitude in CPU time as compared to PWM. Ad-
ditional refinements such as a finite element discretization will further increase
the efficiency of the MG-approach.

In Fig. 1b, we show the bandstructure for TM-polarized radiation in a 2D PC
consisting of a square lattice (lattice constant a) of cylindrical air pores (radius
rpore = 0.475 a) in a silicon matrix (εp = 12). Throughout this chapter, this will
serve as a model PC with which to illustrate our results. This structure exhibits
two 2D PBGs. The larger, fundamental bandgap (20% of the midgap frequency)
extends between ω = 0.238×2πc/a to ω = 0.291×2πc/a and the smaller, higher
order bandgap (8% of the midgap frequency) extends from ω = 0.425 × 2πc/a
to ω = 0.464 × 2πc/a.
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Fig. 1. Density of States (a) and photonic band structure (b) for TM-polarized radia-
tion in a square lattice (lattice constant a) of cylindrical air pores of radius r = 0.475 a
in dielectric with ε = 12 (silicon). This PC exhibits a large fundamental gap extending
from ω = 0.238 × 2πc/a to ω = 0.291 × 2πc/a. A higher order band gap extends from
ω = 0.425 × 2πc/a to ω = 0.464 × 2πc/a

2.2 Photonic Density of States

The photonic dispersion relation ωn(k) gives rise to a photonic Density of States
(DOS), which plays a fundamental role for the understanding of the quantum
optical properties of active material embedded in PCs (see Sect. 3). The photonic
DOS, N(ω), is defined by “counting” all allowed states with a given frequency ω

N(ω) =
∑

n

∫

1stBZ
d2k δ(ω − ωn(k)) . (9)

In Fig. 1a we depict the DOS for our model system, where the photonic band
gaps are manifest as regions of vanishing DOS. Characteristic for 2D systems
is the linear behavior for small frequencies, the discontinuity of the DOS at the
band edges and the logarithmic singularities, the so-called van Hove singularities,
associated with vanishing group velocities for certain frequencies inside the bands
(compare with Fig. 1b).

However, for applications to quantum optical experiments in photonic crys-
tals it is necessary to investigate not only the (overall) availability of modes
with frequency ω but also the local coupling strength of an emitter at a certain
position r in the PC to the electromagnetic environment provided by the PC.
Consequently, it is the overlap matrix element of the emitters dipole moment to
the eigenmodes (Bloch functions) that is determining quantum optical properties
such as decay rates etc. [46]. This may be combined into the local DOS (LDOS),
N(r, ω), defined as

N(r, ω) =
∑

n

∫

BZ
d2k |Enk(r)|2 δ(ω − ωn(k)) . (10)
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For an actual calculation, the integrals in (9) and (10) must be suitably
discretized and one may again revert to the methods of electronic band structure
calculations (see [6]).

2.3 Group Velocity and Group Velocity Dispersion

In order to understand pulse propagation in linear and nonlinear PCs, it is
necessary to obtain group velocities and the group velocity dispersion (GVD)
from the photonic band structure. In principle, this can be done through a simple
numerical differentiation of the band structure, but in particular for the GVD
this becomes computationally involved and great care must be exercised in order
to avoid numerical instabilities. Therefore, we want to demonstrate how to obtain
group velocities and group velocity dispersion through an adaptation of the so-
called k·p-perturbation theory (kp-PT) of electronic band structure theory. This
approach has been applied to systems of arbitrary dimension [10,8,11] and will
be particularly useful for the investigation of nonlinear effects in PCs.

With the help of the Bloch-Floquet theorem (3), we may rewrite the wave
equation (1) into an equation of motion for the lattice-periodic functions uk(r)

(
∆+ 2i∇ · k − k2)uk(r) +

ω2
k

c2
εp(r)uk(r) = 0 , (11)

where, ∆ = ∂2
x + ∂2

y . An inspection of (11) for the lattice-periodic uk+q(r)

(
∆+ 2i∇ · k − k2) uk+q(r) + q ·

(
2Ω̂ − q

)
uk+q(r) +

ω2
k+q

c2
εp(r)uk+q(r) = 0 , (12)

at a nearby wave vector k + q (|q| � π/a) suggests that we treat the second
term on the l.h.s. as a perturbation to (11). In writing (12), we have introduced
Ω̂ = i(∇ + ik). Comparing the perturbation series with a Taylor-expansion of
frequency ωk+q around k connects group velocities vk = ∂kωk and GVD tensor
elements M ij

k = ∂ki
∂kj

ωk, i = 1, 2 to expressions familiar from second order
perturbation theory [10,8,11] . Explicitly [8], we obtain for the group velocity

vnk =
c2

ωnk
〈nk|(−i∇)|nk〉 , (13)

and for the GVD tensor

q · Mnk · q = |q|2 c2

2ωnk
〈nk|nk〉 − 1

2ωnk
(q · vnk)2

+
2c4

ωnk

∑

m�=n

〈nk|(−iq · ∇)|mk〉〈mk|(−iq · ∇)|nk〉
ω2

nk − ω2
mk

. (14)

Here, we have used the notation
∫

WSC
d2r E∗

nk(r) Ô Emk(r) = 〈nk|Ô|mk〉 for
matrix elements of the operator Ô between Bloch functions Enk(r) and Emk(r).
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Fig. 2. Group velocities for bands 1, 3, and 5 of our model system (see Fig. 1). These
group velocities of these bands exhibit extreme variations which may have numerous
application in classical nonlinear optics. This illustrates the huge parameter space of
effective parameters accessible with PCs

Despite their complicated appearance, these expressions can be evaluated
rather easily using standard PWM and allow very accurate, efficient and nume-
rically stable results. In Fig. 2 we display the variation of the group velocities
associated with bands 1, 3, and 5 of our model system. Clearly visible are the
extreme variations ranging from 0.5 c for band 1 in the long wavelength (effec-
tive medium) limit all the way to the almost vanishing group velocity of band
5 along the entire Γ -X direction. This illustrates the huge parameter space of
effective group velocities that can simultaneously be realized in PCs.

3 The Physical Significance of Photonic Band Gaps

In the previous section, we have established the basic notions of photonic band-
structure theory and have given illustrations of the basic optical properties of
PCs such as PBGs, DOS and group velocities. With this, we are now in the
position to give a qualitative account of the physical significance of PBGs and
justify the substantial experimental efforts at manufacturing 2D PBG materials
in various material systems such as semiconductors [12–17], polymers [18,19],
and glasses [20,21] as well as 3D PBG materials in systems that include layer-
by-layer structures [22,23], inverse opals [24–26] and the fabrication of templates
via laser holography [27,28] and direct laser writing [29–32].

3.1 Linear Waveguiding Structures

In conventional microoptical devices such as straight ridge waveguides and opti-
cal fibers, light is guided through the mechanism of total internal reflection inside
a material with higher refractive index than the surrounding material. This gui-
ding mechanism is lost when waveguides or fibers or distorted on a microscopic
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scale. In this case, light propagating in the waveguide or fiber can couple into
the leaky modes provided by the background material and will escape from the
optical circuit. As a result, microoptical circuits are limited to a few devices
as otherwise losses become prohibitively high. This is in stark contrast to el-
ectronic microcircuits where electons are guided by thin metal wires. Electrons
are bound within the cross section of the wire by the so-called work function
(confining potential) of the metal. As a result of this rather different guiding
mechanism, electrons follow the path prescribed by the wire without escaping
into the background.

PBG materials “emulate” confining potentials for light by removing all the
background electromagnetic modes over the relevant band of frequencies. More
precisely, the PBG localizes the light and prevents it from escaping an optical
microcircuit. This is to say, that light paths can be created inside PBGs material
in the form of engineered waveguide channels. As a consequence, this PBG ma-
terials offers a viable platform for the creation of large-scale Photonic Integrated
Circuits (PICs) which may ultimately result in a seamless all-optical network
where communication between nearby computer chips and even within a single
computer chip would take place with tiny beams of light rather than electricity.

However, the realization of complex PICs imposes more stringent require-
ments on the designs than just to have a PBG: In order to achieve acceptable
performace and a certain robustness with respect to fabricational tolerances, it
is imperative to minimize parasitic Fabry-Perot resonances between connecting
elements such as waveguide bends, beamsplitters, and waveguide intersections.
Ideally, all these connecting elements should be non-reflecting over a broad fre-
quency range. In addition, the cross-talk between waveguides in an intersection
should be strongly suppressed. We will return to these issues in Sect. 4.

3.2 Nonlinear Excitations

The response of optical materials to external excitations such as laser radiation
is generally nonlinear. However, optical nonlinearities are often rather weak and
one can argue that it should be possible to essentially simplify the problem by
solving it in two steps. The first step is to linearize the governing equations and
determine the ground state of the system under consideration together with its
linear excitation spectrum. The effects of nonlinearity can subsequently be taken
into account by means of appropriate perturbation theories. According to this
approach, the effect of nonlinearity appears as an interaction between the linear
excitations of the system. Although, this scheme may be useful for certain types
of nonlinear problems, it fails to describe a wide range of interesting nonlinear
phenomena. The reason for this is that nonlinear wave equations (and many
other nonlinear differential equations appearing in other areas of physics) allow
novel kinds of stable excitations which cannot be derived from the corresponding
linearized equations. These inherently nonlinear solutions are called solitary wa-
ves or, in the particular case of integrable models, solitons. They simply vanish
in the limit of infinitesimal wave amplitude and, therefore, cannot be conside-
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red within a finite order of (linear) perturbation theory. Instead, they should be
treated as novel fundamental modes of the system.

For instance, if one of the constituent materials of a PBG structure exhibits a
Kerr nonlinearity, i.e., an intensity dependent refractive index, the local intensity
of the electromagnetic field can locally tune the PBG. As a consequence nonli-
near PBG materials can become transparent to electromagnetic radiation with
frequencies in the (linear) PBG. This leads to the formation of a special class of
nonlinear excitations, the so-called gap solitons. The fundamental importance of
these nonlinear excitations consists in the fact that they have a central frequency
inside the PBG where linear excitations do not exist. Therefore, the direct ob-
servation of gap solitons would be the experimental proof that solitary waves
represent fundamental excitations and cannot be reduced to linear excitations.

Maxwell’s equations for TM-polarized light propagating in a nonlinear PC
take the form

(
∂2

x + ∂2
y

)
E(r, t) − εp(r)

c2
∂2

tE(r, t) =
4π
c2
∂2

t PNL(r, t) . (15)

In writing this equation we have neglected the linear dispersion of the consti-
tuent materials, which is usually negligible compared to the dispersion associated
with the photonic band structure.

To date, only a few works have been carried out for Kerr-nonlinearities [33–35]
or for χ(2)-nonlinearities [36,37] in PCs. Moreover, the approximations involved
in some of these works seriously limit the applicability of these theories to real
PCs. For instance, the study of Kerr-nonlinearities in 2D PCs [33] has been
limited to weak modulations in the linear index of refraction. Similarly, the
recent investigation of second harmonic generation in 2D PCs [36,37] failed to
reproduce the well-known results for the limiting case of homogeneous materials.

A systematic approach to quantitative calculations of the optical properties of
nonlinear PCs is based on a multi-scale approach [38]. Since optical nonlinearities
are generally quite weak, (15) should be solved in a perturbative way taking into
account that the effect of the nonlinearity accumulates only on time and spatial
scales that are much slower and longer, respectively, than the natural scales of the
underlying linear problem. For electromagnetic wave propagation in PCs, these
natural scales of the linear problem are determined through the inverse optical
period and the associated wavelength of the light. Therefore, key simplifications
to (15) arise from separating the fast from slow scales in space and time in the
electromagnetic field [10]

E(r, t) = µe1(r0, r1, · · · ; t0, t1, · · · ) + µ2e2(r0, r1, · · · ; t0, t1, · · · ) + · · · , (16)

by formally replacing the space and time variables, r and t, with a set of inde-
pendent variables rn ≡ µnr and tn ≡ µnt. Here, we denote the fastest spatial
scale corresponding to the wavelength of the electromagnetic waves propagating
in the linear PC by r0. Likewise, we denote the associated fastest temporal scale
by t0. Depending on the type of nonlinearity, the hierarchy is suitably truncated
and a closed set of equations is obtained by collecting terms of equal order in µ.
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To express the results in terms of the original physical variables, at the end of
the calculations one has to set µ = 1 [10].

As an illustration, we consider the case of the Kerr-nonlinear material, for
which the refractive index depends on the light intensity leading to the nonlinear
polarization PNL(r, t) = χ(3)(r)E3(r, t). Here, we have neglected the nonlinear
material dispersion. In this case, substituting (16) into (15) and assuming that
third-harmonic generation effects are not phase-matched and, hence, can be
neglected, we obtain in the third order in µ that

e1(r0, r1, · · · ; t0, t1, · · · ) = ank(z1; r2, · · · ; t1, · · · )Enk(r0) eiωnkt0 + c.c. , (17)

where z1 ≡ r1 − vnkt1 with the group velocity vnk given by (13), the Bloch
function Enk(r0) represents a carrier wave and the envelope function ank(r1, · · · ;
t1, · · · ) has to be determined from the 2D nonlinear Schrödinger equation

[i (vnk · ∇r2 + ∂t2) + ∇z1 · Mnk · ∇z1 ] ank(z1; r2 · · · ; t2, · · · )
+ αnk |ank(z1; r2 · · · ; t2, · · · )|2 ank(z1; r2 · · · ; t2, · · · ) = 0, (18)

where the GVD tensor Mnk is given in (14) and the effective nonlinearity

αnk = 6π ωnk

∫

WSC

d2r χ(3)(r) |Enk(r)|4 (19)

reflects how the carrier wave Enk(r) samples the spatial distribution χ(3)(r) of
nonlinear material within the PC.

The discussion of the solutions to (18) is outside the scope of the present
work and we refer the reader to references on the inverse scattering theory and
other methods [39]. However, we would like to note that (18) supports solitary
wave solutions and is, therefore, appropriate for the discussion of gap solitons
and similar analyses may be employed for discussing the interactions of various
types of solitons [40,41]. In addition, we would like to emphasize the multi-scale
approach introduced above represents an asymptotic expansion and cannot be
reduced to standard perturbation theory. As a result of the foregoing analysis,
we have instead obtained a generalization of the slowly varying envelope ap-
proximation. Within this approximation, the problem of pulse propagation in
nonlinear PCs is mapped onto the problem of an envelope function propagating
in an effective homogeneous medium with group velocity vnk, GVD tensor Mnk,
and effective nonlinearity αnk that are determined by the carrier wave, which, in
turn, is given by a Bloch function of the linear PC. Therefore, the effective PC
parameters can be obtained from band structure theory via (13), (14), and (19)
and quantitative investigations become possible. Furthermore, we note that the
above considerations are not limited to 2D TM polarized radiation and have re-
cently been extended to 3D systems by Bhat and Sipe [34]. Moreover, the above
framework of multi-scale analysis in conjunction with k · p-perturbation theory
can be applied to other nonlinear PC systems such as PCs consisting of non-
resonant χ(2) [41,42] material and resonant distributed feedback lasing systems
[43]. In the present case of Kerr nonlinearities, other effects such as nonresonant
soliton interactions can be considered and lead to interesting applications for the
detection and manipulation of gap solitons [40,41].
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3.3 Suppression and Control of Spontaneous Emission

An active material with a free space radiative transition that lies deep inside
a PBG will be unable to emit a photon when placed inside a PBG material;
instead, a photon–atom bound state is formed [44,46]. For transitions near the
edge of a PBG, the emission dynamics will be modified relative to free space,
due to the restricted number of photon modes available at the band edge [45,46].
The resulting non–Markovian atom–field interaction has been predicted to give
rise to a number of novel quantum optical phenomena, such as laser–like collec-
tive atomic emission [47] and atomic states that can be readily generated and
protected from processes that would serve to decohere the system [48]. These are
but a few of the novel phenomena associated with the suppression and control
over active material that can be achieved through PBG materials.

In a rotating wave approximation, the full quantum Hamiltonian for a two-
level atom and the electromagnetic field in a PC can be written as [46]

H =
�

2
ω21σz + �

∑

µ

ωµa
†
µaµ

+ i�
∑

µ

(
gµa

†
µσ− − g∗

µσ+aµ

)
. (20)

The index µ labels the energy band and wavevector of a given field mode
(Bloch function), µ ≡ {n,k}, and a†

µ and aµ are the corresponding creation
and annihilation operators for these modes, respectively. The σj (j = +,−) are
the usual Pauli operators for a two-level atom with a (bare) atomic resonance
frequency ω21. The position–dependent atom-field mode coupling constants, gµ,
are given by [46]

gµ(d, r0) ≡ gµ = ω21d21

√
1

2�ε0ωµVWSC

d · E∗
µ (r0) , (21)

where d21 and d are respectively the magnitude and the direction unit vector of
the dipole matrix element for the atomic transition.

We wish to analyze the atomic emission in a Schrödinger equation formalism
[45,46]. Atom-field interactions that involve more than one photon are more
easily (and often necessarily) described by a density matrix or by Heisenberg
operator equations, and much of our analysis can be carried over to such systems.
In the single photon sector of the atom-field Hilbert space, the wavefunction for
a two–level atom with dipole moment d21d is

|Ψ〉 = b2(d, r0, t) |2, {0}〉 +
∑

µ

b1,µ(d, r0, t) |1, {µ}〉 e−i∆µt . (22)

b2(d, r0, t) and b1,µ(d, r0, t) label the probability amplitudes for the excited atom
plus an electromagnetic vacuum state, and a de-excited atom with a single pho-
ton in mode µ, respectively, at a given position r0 of a Wigner-Seitz cell in a
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PC; ∆µ = ωµ − ω21. In a frame that is co-rotating with the bare atomic reso-
nance frequency, ω21, (22) along with the Hamiltonian (20) give the equations
of motion for the amplitudes,

d

dt
b2(d, r0, t) = −

∑

µ

gµb1,µ(d, r0, t)e−i∆µt, (23)

d

dt
b1(d, r0, t) = gµb2(d, r0, t)ei∆µt . (24)

Formally integrating (24), substituting the solution into (23), and averaging
over the dipole orientation, we arrive at an equation for the dipole-averaged
excited state amplitude b2(r0, t) [46]

d

dt
b2(r0, t) = −

∫ t

0
G(r0, t− t′) b2(r0, t

′)dt′ . (25)

G(r0,t−t′) is a time delay Green function, or memory kernel, which describes the
effect of the modified electromagnetic vacuum on the atomic system at position
r0; it is defined as

G(r, τ) = Θ(τ)β
∫ ∞

0
dω

N(r, ω)
ω

e−i(ω−ω21)τ , (26)

where N(r, ω) is the LDOS of the PC at r and we have absorbed all numerical
factors into the prefactor β = ω2

21d
2
21/12�ε0π

2.
The occurence of the LDOS in (26) can be understood as follows: Consider

an excited atom at some specific location within a PBG material. In order for
the atom to decay via a single-photon process it needs to emit a photon into a
Bloch mode of the PBG material. Consequently, it is the local coupling (overlap
matrix element) of the atomic dipole moment to photons in this modes that
determines the decay rate of the excited atom. Assuming that an allowed electric
dipole transition is the dominant decay channel, we may combine (overall) mode
availability, the DOS, and coupling to the mode in the LDOS as a measure of
the local coupling strength between the atomic dipole moment and the modes
of the PC.

We would like to emphasize that (25) is essentially exact and provides the
basis for the fractional localization of the atomic population for atomic transition
frequencies near a photonic band edge [44–46] as well as for the anomalous Lamb
shift of atomic transition frequencies which can easily lead to corrections of the
normal Lamb shift that are several tens of percent in magnitude with both,
positive and negative signs [46]. Finally, almost any approximation to (25) rests
on shaky foundations: For instance, given the rapidly oscillating exponent in
the memory kernel, (26), one is tempted to treat the LDOS near the frequency
ω21 of interest as constant, take it outside the frequency integral and evaluate
this integral to be proportional to a delta-function in time. As a consequence,
(25) would take on the form of a simple differential equation which can easily
be solved by a decaying exponential function whose decay constant, i.e. rate
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of spontaneous emission, is proportional to the LDOS at frequency ω21. While
this is deceptively simple, it is just as wrong. If the LDOS varies rapidly near
the atomic transition frequency ω21, this approximation – generally known as
Markov- or Wigner-Weiskopf approximation – cannot be justified. As Fig. 1
demonstrates, such rapid variations of the LDOS occur near the band edges
and at van-Hove singularities inside the bands and their exact positions depend
strongly on the parameters of the PC.

4 Linear Defect Structures in Photonic Crystals

To date, the overwhelming majority of theoretical investigations of cavities and
waveguiding elements in PCs has been carried out using Finite-Difference Time-
Domain (FDTD) and/or Finite-Element (FE) techniques. However, applying
general purpose methodologies such as FDTD or FE methods to defect structures
in PCs largely disregards information about the underlying PC structure which
is readily available from photonic bandstructure computation. As a result, only
relatively small systems can be investigated and the physical insight remains
limited.

4.1 Maximally Localized Photonic Wannier Functions

A more natural description of localized defect modes in PCs consists in an ex-
pansion of the electromagnetic field into a set of localized basis functions which
have encoded into them all the information of the underlying PC. Therefore, the
most natural basis functions for the description of defect structures in PCs are
the so-called photonic Wannier functions, WnR(r), which are formally defined
through a lattice Fourier transform

WnR(r) =
VWSC

(2π)2

∫

BZ

d2k e−ikREnk(r) (27)

of the extended Bloch functions, Enk(r). The above definition associates the pho-
tonic Wannier functionWnR(r) with the frequency range covered by band n, and
centers it around the corresponding lattice site R. In addition, the completeness
and orthogonality of the Bloch functions translate directly into corresponding
properties of the photonic Wannier functions.

Computing the Wannier functions directly from the output of photonic band-
structure programs via (27) leads to functions with poor localization properties
and erratic behavior (see, for instance, Fig. 2 in [49]). These problems origi-
nate from an indeterminacy of the global phases of the Bloch functions. It is
straightforward to show that for a group of NW bands there exists, for every
wave vector k, a free unitary transformation between the bands which leaves
the orthogonality relation of Wannier functions unchanged. A solution to this
unfortunate situation is provided by recent advances in electronic bandstructure
theory. Marzari and Vanderbilt [50] have outlined an efficient scheme for the
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n=19

Fig. 3. Photonic Wannier functions, Wn0(r), for the six bands that are most relevant
for the description of the localized defect mode shown in Fig. 4b. These optimally lo-
calized Wannier functions have been obtained by minimizing the corresponding spread
functional, (28). Note, that in contrast to the other bands, the Wannier center of the
eleventh band is located at the center of the air pore. The parameters of the underlying
PBG material are the same as those in Fig. 1

computation of maximally localized Wannier functions by determining numeri-
cally a unitary transformation between the bands that minimizes an appropriate
spread functional F

F =
NW∑

n=1

[
〈n0| r2 |n0〉 − (〈n0| r |n0〉)2

]
= Min . (28)

Here we have introduced a shorthand notation for matrix elements according to

〈nR| f(r) |n′R′〉 =
∫

R2
d2rW ∗

nR(r) f(r) εp(r)Wn′R′(r) , (29)

for any function f(r). For instance, the orthonormality of the Wannier functions
in this notation read as

〈nR| |n′R′〉 =
∫

R2
d2rW ∗

nR(r) εp(r)Wn′R′(r) = δnmδRR′ . (30)

The field distributions of the optimized Wannier functions belonging to the
six most relevant bands of our model system are depicted in Fig. 3. Their lo-
calization properties as well as the symmetries of the underlying PC structure
are clearly visible. It should be noted that the Wannier centers of all calculated
bands (except of the eleventh band) are located halfway between the air pores,
i.e. inside the dielectric (see [50] for more details on the Wannier centers). In
this context, most relevant means that the corresponding Wannier functions are
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sufficient to quantitatively simulate the defect structures considered below to
an accuracy better than 0.5%. This is reflected in the so-called V -parameter for
a single cavity (see [49]). In addition, we would like to point out that instead
of working with the electric field [51,49], (1), one may equally well construct
photonic Wannier functions for the magnetic field, as recently demonstrated by
Whittaker and Croucher [52].

4.2 Defect Structures via Wannier Functions

The description of defect structures embedded in PCs starts with the correspon-
ding wave equation in the frequency domain

∇2E(r) +
(ω
c

)2
(εp(r) + δε(r))E(r) = 0 . (31)

Here, we have decomposed the dielectric function into the periodic part, εp(r),
and the contribution, δε(r), that describes the defect structures. Within the
Wannier function approach, we expand the electromagnetic field according to

E(r) =
∑

n,R

EnRWnR(r) , (32)

with unknown amplitudes EnR. Inserting this expansion into the wave equation
(31) and employing the orthonomality relations, (30), leads to the basic equation
for lattice models of defect structures embedded in PCs

∑

n′,R′

{
δnn′δRR′ +Dnn′

RR′

}
En′R′ =

( c
ω

)2 ∑

n′,R′
Ann′

RR′En′R′ . (33)

The matrix Ann′
RR′ depends only on the Wannier functions of the underlying

PC and is defined through

Ann′
RR′ = −

∫

R2
d2r W ∗

nR(r) ∇2Wn′R′(r) . (34)

The localization of the Wannier functions in space leads to a very rapid decay
of the magnitude of matrix elements with increasing separation |R−R′| between
lattice sites, effectively making the matrix Ann′

RR′ sparse. Furthermore, it may
be shown that the matrix Ann′

RR′ is Hermitian and positive definite. Similarly,
once the Wannier functions of the underlying PC are determined, the matrix
Dnn′

RR′ depends solely on the overlap of these functions, mediated by the defect
structure:

Dnn′
RR′ =

∫

R2
d2r W ∗

nR(r) δε(r)Wn′R′(r) . (35)

As a consequence of the localization properties of both the Wannier functions
and the defect dielectric function, the Hermitian matrix Dnn′

RR′ , too, is sparse. In
the case of PCs with inversion symmetry, εp(r) ≡ εp(−r), the Wannier functions
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can be chosen to be real. Accordingly, both matrices, Ann′
RR′ and Dnn′

RR′ become
real symmetric ones.

Depending on the nature of the defect structure, we are interested in (i)
frequencies of localized cavity modes, (ii) dispersion relations for straight wave-
guides, or (iii) transmission and reflection through waveguide bends and other,
more complex defect structures. Each of these cases can be solved by carefully
analyzing the central equation (33) and we would like to refer to [49] for details.

In the following, we take up the discussion of Sect. 2 pertaining to the rea-
lization of large-scale PICs using PBG materials.

4.3 PBG Materials and Photonic Integrated Circuits

Research in this area has been initiated in 1996, when it has been realized [53]
that removing a single row of rods in a two-dimensional (2D) PC consisting of
a square lattice of dielectric rods creates a broad-band mono-mode waveguide
for TM-polarized light. In addition, reflection from waveguide bends in these
systems does not exceed 5% over a wide frequency range [53] and changing the
radii of certain rods facilitates the design of relatively broad-band low-reflecting
beamsplitters [55] (see [54] for further references). Unfortunately, since the re-
moval of a single rod creates a monopole-type cavity mode, the elimination of
parasitic cross-talk between the waveguides in an intersection requires the usage
of high-Q resonances. This significantly narrows the free bandwidth for these
systems [56]. In addition, any real rod-based structure would consist of finite
height rods so that light propagating in the resulting air waveguide cannot be
guided in the third dimension. To circumvent these problems, it has recently been
suggested to sandwich such structures between properly designed 3D PCs [57].
Clearly, such an approach requires highly advanced 3D fabrication techniques.

As a result, 2D PCs for application at optical wavelengths typically consist
of arrays of air pores that have been etched into high-refractive index materi-
als such as macroporous silicon, GaAs, or InP through standard semiconductor
processing technologies [12–17] .

The majority of defects studied in such systems consist of missing pores and,
therefore, guidance in the third direction may be realized. In these PCs, PBGs
for TE-polarized light are typically larger than PBGs for TM-polarized light
and substantial efforts have been devoted to the design of efficient functional
elements for TE-polarized light. However, in this case a single missing pore
creates a doubly-degenerate dipole-like cavity mode. Consequently, the resulting
PC waveguides are intrinsically multi-moded. Therefore, despite the large PBGs,
the frequency regions of mono-mode operation of straight waveguides are rather
narrow. More importantly, guiding light around bends is rather inefficient in
the TE-polarized case because (i) the waveguides may become multi-moded in
the vicinity of the bends and undesired cross-coupling between different modes
occurs and (ii) there exists a impedance mismatch between the waveguide modes
in the different leads due to their asymmetric coupling to the dipole-like cavity
modes of the bend. Nevertheless, we would like to note that this asymmetric p-
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(a) (b)
Fig. 4. (a) Schematic of a 2D PBG material consisting of a square lattice of air po-
res, with a single pore infilled with a liquid crystal or a polymer. (b) Electric field
distribution for the corresponding non-degenerate cavity mode for TM-polarized light

coupling has been exploited for the design of relatively broad-band low-crosstalk
waveguide intersections [58].

In this chapter, we suggest a novel approach to tunable PC circuits that com-
bines several attractive advantages: (i) The PC circuits are based on 2D PBG
materials consisting of air pores in high-refractive-index dielectrics and, there-
fore, are easily fabricated. (ii) They exploit non-degenerate defect modes created
for TM-polarized light by infilling individual pores with appropriate low or mo-
derate refractive index materials such as liquid crystals and/or polymers. By
construction, this leads to essentially mono-mode PC waveguides. Furthermore,
a peculiar symmetry of this cavity modes may be exploited to simultaneously ob-
tain design for broad-band non-reflecting waveguides and beamsplitters as well
as broad-band low-crosstalk waveguide intersections. (iii) Owing to the tunabi-
lity of the infilled materials the resulting circuits will be tunable.

Within this context, we would like to note that the idea to infiltrate PCs
with liquid crystals to achieve tunable bandstructures has been suggested theo-
retically [7] and validated experimentally for 2D [61,62] and 3D [59,60] PCs. In
addition, a tunable beamsplitter for TE-polarized light in 2D PCs with liquid-
crystal infilled pores has recently been suggest theoretically [63]. Unfortunately,
the corresponding cavity mode is doubly degenerate and dipole-like. As a result,
the PC waveguides are intrinsically multi-moded, and it remains a challenge to
design broad-bend non-reflecting waveguide bends, beamsplitters, and intersec-
tions.

Infilling a material with refractive index ndef =
√
εdef = 1.55 into a single pore

of our model PBG material (see Fig. 1) gives rise to a non-degenerate monopole-
like cavity mode as depicted in Fig. 4. In Fig. 5a we display the dispersion relation
for the propagating guided modes of a straight PC waveguide created by infilling
a material with refractive index ndef =

√
εdef = 1.55 into a single row of pores.

Being based on a non-degenerate cavity mode, this PC waveguides is mono-
moded throughout the entire available frequency range. The bandwidth of this
mode can be significantly increased either by increasing the radius of the pores



18 K. Busch et al.

0 0.1 0.2 0.3 0.4 0.5
Wave vector (ka/2π)

0

0.1

0.2

0.3

Fr
eq

ue
nc

y,
  a

/λ

k

1.3 1.4 1.5 1.6 1.7
n

def

0.26

0.27

0.28

0.29

Fr
eq

ue
nc

y,
  a

/λ Guided
modes

(a)

(b)

Fig. 5. (a) Dispersion relation for a PC waveguide obtained by infilling a single row
of pores with a material with refractive index ndef =

√
εdef = 1.55. The hatched areas

represent the projected band structure of the underlying PC. (b) Bandwidth of the
guided modes (shaded area) of the same PC waveguide as a function of the refractive
index ndef of the infilled material

or by increasing the refractive index of the infilled material, as demonstrated in
Fig. 5b.

4.4 Functional Elements for Photonic Integrated Circuits

After having introduced the novel concept of cavities and waveguides based on
the infilling of pores of high-refractive index PBG materials with low-refractive
index liquid crystals or polymers, we now turn to the problem of developing
concepts and designs for functional elements based on the same principle. As al-
luded to in Sect. 2, in order to minimize parasitic Fabry-Perot resonances, these
elements should be non-reflecting over a broad frequency range. In addition, the
cross-talk between waveguides in an intersection should be strongly suppressed.
In Fig. 6 we present the transmission spectra for three different designs of a 90◦

waveguide bend. The designs that have been successfully used for TM-polarized
light in rod-based PCs [53] appear to be extremely inefficient in our case. For
instance, the transmission through the waveguide bend depicted in Fig. 6a is al-
most zero over the entire frequency range of interest. In fact, our initial attempts
at improving these results by “rounding” the waveguide bend have failed com-
pletely. However, once we ignored this standard procedures employed in other
systems and started to design “photon hopping paths” based on the field distri-
bution of the cavity mode displayed in Fig. 4b, we have been able to arrive at
successful designs for broad-band low-reflection waveguide bends as illustrated
in Figs. 6b and 6c. As depicted in Fig. 7 for our optimized beamsplitter de-
sign, the “photon hopping picture” is an appropriate description for mono-mode
waveguide systems in PCs.

To design an efficient waveguide intersection, we have utilized the “ineffi-
cient” design of a waveguide bend shown in Fig. 6a. In this case (see Fig. 8), we
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Fig. 6. Transmission spectra for three different designs of waveguide bends as illustra-
ted in the upper drawings.
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Fig. 7. Transmission and reflection spectra for our optimized design of a the beams-
plitter whose schematic is shown in the panel.

have been able to almost completely eliminate parasitic cross-talk between the
waveguides without having to take recourse to high-Q resonances as suggested
in [56]. As a result, our waveguide intersection operates over a broad range of
frequencies. A careful inspection of Fig. 8 reveals that the reflection from the
intersection vanishes only in a relatively small frequency range. However, we
can easily shift and extend this region by changing the refractive index in the
four corner pores. More generally, infilling these pores with materials exhibiting
different refractive indices allows us to further improve the characteristics of all
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Fig. 8. Transmission and reflection spectra for a broad-band low-crosstalk design of a
waveguide intersection whose design is shown in the right panel

the devices discussed above. This suggests that the tunability of the infiltrated
materials will provide a corresponding tunability to the devices designed above.

5 Conclusions and Outlook

In summary, we have outlined a framework based on solid-state theoretical me-
thods that allows one to qualitatively and quantitatively treat electromagnetic
wave propagation in PCs. Photonic bandstructure computations for infinitely
extended PCs provides photonic bandstructures, identifies PBGs and allows us
to calculate other physical quantities such as DOS, LDOS, group velocities and
group velocity dispersion.

The description of nonlinear PCs through a multi-scale approach facilitates
the systematic construction of generalized slowly varying envelope approxima-
tions which, in turn, allow us to quantitatively investigate such systems using
a limited number of effective parameters with transparent physical meaning. In
addition, we have shown how the LDOS determines the radiative characteristics
of active material embedded in PCs. This shows that standard approximations
of the corresponding equations of motion are generally insufficient and the full
non-Markovian problem needs to be solved instead.

Furthermore, the input of bandstructure calculations facilitates the construc-
tion of maximally localized photonic Wannier functions which allow us to effi-
ciently obtain the properties of defect structures embedded in PCs. In particular,
the efficiency of the Wannier function approach allows us to investigate large-
scale PC circuits which, to date, are beyond the reach of standard simulation
techniques such as FDTD or FE methods.

In addition, we suggest that the infiltration of low-refractive index materials
into air pores of bulk high-index 2D PBG materials provides a novel platform for
ultra-compact PICs using TM-polarized radiation. Owing to a non-degenerated
cavity mode with a peculiar field distribution, we have designed mono-mode PC
waveguides and a number of broad-band non-reflecting functional elements such
as bends, beamsplitters, and low-crosstalk waveguide intersections. These func-
tional elements may be realized by infiltrating different types of liquid crystals
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and/or polymers into appropriate 2D PBG materials (for a recent overview of
the current state of microinfiltration see [64]). Our concept opens numerous ave-
nues for tunable PC circuits based on the tunability of the infiltrated materials
which may enhance the utility of these composite system over and above the
conventional PC circuits.

Future work will be aimed at the design of novel devices with prescribed
properties such as folded directional couplers, the investigation of devices based
on triangular PBG materials, and the extension to nonlinear defect structures.
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33. N. Aközbek, S. John: Phys. Rev. E 57, 2287 (1998)
34. N. Bhat, J. Sipe: Phys. Rev. E 64, 056604 (2001)
35. S.F. Mingaleev, Yu.S. Kivshar: Phys. Rev. Lett. 86, 5474 (2001)
36. K. Sakoda: Optical properties of Photonic Crystals, (Springer, Berlin, Heidelberg,

New York 2001)
37. K. Sakoda, K. Ohtaka: Phys. Rev. B 54, 5742 (1996)
38. A.H. Nayfeh: Perturbation Methods (Wiley, New York 1973)
39. R.K. Dodd, J.C. Eilbeck, J.D. Gibbon, H.C. Morris: Solitons and Nonlinear Wave

Equations (Academic Press, London 1982)
40. L. Tkeshelashvili, S. Pereira, K. Busch: submitted (2004)
41. L. Tkeshelashvili: Interaction of Nonlinear Waves in Photonic Crystals. PhD The-

sis, University of Karlsruhe (2003)
42. L. Tkeshelashvili, K. Busch: submitted (2004)
43. L. Florescu, K. Busch, S. John: J. Opt. Soc. Am. B 19, 2215 (2002)
44. S. John, J. Wang: Phys. Rev. B 43, 12772 (1991)
45. S. John, T. Quang: Phys. Rev. A 50, 1764 (1994)
46. N. Vats, S. John, K. Busch: Phys. Rev. A 65, 043808 (2002)
47. N. Vats, S. John: Phys. Rev. A 58, 4168 (1998)
48. M. Woldeyohannes, S. John: Phys. Rev. A 60, 5046 (1999)
49. K. Busch, S.F. Mingaleev, A. Garcia-Martin, M. Schillinger, D. Hermann: J. Phys.:

Condens. Matter 15, R1233 (2003)
50. N. Marzari, D. Vanderbilt: Phys. Rev. B 56, 12847 (1997)
51. A. Garcia-Martin, D. Hermann, K. Busch, P. Wölfle: Mater. Res. Soc. Symp. Proc.
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Circular Photo-Galvanic
and Spin-Galvanic Effects

Eugeniyus L. Ivchenko

A.F. Ioffe Physico-Technical Institute, RAS, 194021 St. Petersburg, Russia

Introduction

Light propagating through a semiconductor and acting upon mobile carriers
can generate a dc electric current, under short-circuit condition, or a voltage, in
case of open-circuit samples. In this lecture we consider only the Photo-Galvanic
Effects (PGE) which, by definition, appear not due to inhomogeneity of optical
excitation of electron-hole pairs, as in the Dember and Photo-Electro-Magnetic
Effects, and not due to inhomogeneity of the sample, as in the conventional
Photo-Voltaic Effect in p-n junctions. Phenomenologically, they are described
by the following equation

jλ = I

[
γλµi (e × e∗)µ + χλµν

eµe
∗
ν + eνe

∗
µ

2
+ Tλµνηqµeνe

∗
η

]
(1)

which relates the dc current density with the light intensity I, polarization e
and wave vector q. In a bulk semiconductor or superlattice the index λ runs
over all three Cartesian coordinates x, y, z. In quantum well (QW) structures
the free-carrier motion along the growth direction is quantized and the index λ
enumerates two interface coordinates. In quantum wires and nanotubes the free
movement is allowed only along one axis, the principal axis of the structure, and
the coordinate λ is parallel to this axis. On the other hand, the light polarization
unit vector e can be arbitrarily oriented in space and, therefore, µ, ν = x, y, z.
Note that, for linearly polarized light, the complex conjugate vector e∗ is parallel
to e and the vector product e × e∗ vanishes. For elliptically polarized electro-
magnetic wave, the vector i (e × e∗) is real and proportional to the degree of
circular polarization Pc; for a transverse wave it can be presented as a product
Pcô where ô is a unit vector in the direction of light propagation.

The tensor γ in (1) relates components of the polar vector j and the axial
vector e × e∗. It is non-zero for point groups which allow optical activity or
gyrotropy. The effect described by this tensor is called the circular PGE. It
appears only under illumination with circularly polarized light and reverses di-
rection when the sign of circular polarization is changed.

The effect described by the second term in (1) is called the linear PGE. The
reason is that it is independent on the sign of circular polarization and usually
measured under linearly polarized photoexcitation. The third-rank tensor χ in
(1) is invariant under interchange of indices µ and ν. Therefore, the linear PGE
can be observed in non-centrosymmetric media of the piezoelectric classes.

E.L. Ivchenko, Circular Photo-Galvanic and Spin-Galvanic Effects, Lect. Notes Phys. 658, 23–50
(2005)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2005
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The third term on the right-hand side of (1) represents the Photon Drag
Effect. It is due to momentum transfer from photons to charge carriers and can
be induced in both non-centrosymmetric and centrosymmetric systems.

1 Circular Photo-Galvanic Effect
in Quantum Well Structures

Physically, the circular PGE can be considered as a transformation of the pho-
ton angular momenta into a translational motion of free charge carriers. It is
an electronic analog of mechanical systems which transmit rotatory motion to
linear one like a screw thread or a plane with propeller. The effect was indepen-
dently predicted by Ivchenko and Pikus [1] and Belinicher [2] and then studied
both theoretically and experimentally in bulk gyrotropic crystals (see the re-
view article [3] and the book [4]), particularly in Tellurium [5,6], and recently in
zinc-blende- and diamond-based QW structures [7–10].

Here, we will perform the symmetry analysis of the circular PGE in (001)- and
(113)-grown QWs, present demonstrational experimental data and outline the
microscopic theory of the effect under interband, intersubband and intrasubband
optical transitions in QWs.

The three point groups D2d, C2v and Cs are particularly relevant in connec-
tion with the photo-galvanic experiments on zinc-blende-based QW structures;
hereafter the Schönflies notation is used to label the point groups. In the inter-
national notation they are labelled as 4̄2m,mm2 and m, respectively. A (001)-
grown QW with equivalent normal and inverted interfaces has the D2d point-
group symmetry. The point group reduces from D2d to C2v in symmetrical QWs
with built-in electric fields or asymmetrical QWs, say compositionally stepped
QWs, QWs with different profiles of the left and right interfaces etc. If QWs are
grown along the low-symmetry axis [hhl] 
= [001] and [111], the point group be-
comes Cs and contains only two elements, the identity and one mirror reflection
plane σ(11̄0). In the case h = l = 1, the QW point symmetry increases up to C3v.

For the point group Cs, in the coordinate system x ‖ [11̄0], y ‖ [ll(2h)],
z ‖ [hhl] the y- and z-components of a polar vector and x-component of an axial
vector are invariants (the representation A+ of the Cs group), the x-component
of a polar vector and y- and z-components of an axial vector transform according
to the representation A−. As a result, the first term in (1) can be rewritten as

jx = (γxyoy + γxzoz)IPc , jy = γyxoxIPc . (2)

For the point group C2v, in the coordinate system x ‖ [11̄0], y ‖ [110],
z ‖ [001] the component γxz is zero and the equations (2) reduce to

jx = γxyoyIPc , jy = γyxoxIPc . (3)

Finally, for the point group D2d, in the above coordinate system the same
equations are also valid but the higher symmetry imposes the condition γxy =
γyx ≡ γ on the γ tensor and one has

jx = γoyIPc , jy = γoxIPc . (4)
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It follows from (2)-(4) that, in QWs of the Cs symmetry, the circular PGE
can be observed even under normal incidence of irradiation while, in QWs of the
C2v or D2d symmetry, the circular photocurrent can be generated only under
oblique incidence.

Figure 1 shows results of measurements carried out at room temperature on
(113)-grown p-GaAs/AlGaAs MQWs under normal incidence (upper panel) and
(001)-grown n-InAs/AlGaSb SQW structure under oblique incidence with an
angle of incidence in vacuum θ0 = −30◦ (lower panel). Optical excitation was
performed by a high power far infrared pulsed NH3 laser which yields strong
linearly polarized emission at wavelengths λ between 35 and 280 µm correspon-
ding to photon energies from 35 to 4.4 meV with power up to 100 kW. The
linearly polarized light could be modified to an elliptically polarized radiation
by applying a crystalline quartz λ/4 plate and changing the angle ϕ between the
optical axis of the plate and the polarization plane of the laser radiation. Thus
the helicity Pc of the incident light varies from −1 (left handed, σ−) to +1 (right
handed, σ+) according to

Pc = sin 2ϕ . (5)

One can see from Fig. 1 that the photocurrent direction is reversed when
the polarization switches from right-handed circular, ϕ = 45◦, to left-handed,
ϕ = 135◦. Moreover, the experimental points are well fitted by the equation

jλ(ϕ) = j0λ sin 2ϕ (6)

with one scaling parameter j0λ.
In Fig. 2 a closer look is taken at the dependence of the photocurrent on the

angle of incidence θ0 in configuration with the incidence plane normal to the axis
x. According to (2) the photocurrent induced along x in (113)-oriented QWs is
given by

jx = (γxy sin θ + γxz cos θ)tptsI0Pc , (7)

where I0 is the light intensity in vacuum, tp and ts are transmission coefficients
after Fresnel’s formula for linear p and s polarizations, θ is the refraction angle
defined by sin θ = sin θ0/n, and n is the index of refraction. In this case the
circular PGE is observed at normal incidence. The fact that jx is an even function
of θ0 means that in the sample under study the component γxz of the γ tensor
is much larger as compared with γxy. In (001)-oriented samples where γxz = 0
a signal proportional to sin 2ϕ is only observed under oblique incidence and a
variation of θ0 in the plane of incidence changes the sign of the current jx exactly
at the point θ0 = 0.

Microscopically, a conversion of photon helicity into a current can be related
to k-linear terms in the effective Hamiltonian H(1) = βlmσlkm (see Appendix
for the information concerning these terms). The coefficients βlm form a pseudo-
tensor subjected to the same symmetry restriction as the pseudo-tensor γ. The
coupling between the spin Pauli matrices σl and the wave vector components
km as well as spin-dependent selection rules for optical transitions yield a net
current sensitive to circularly polarized optical excitation. The circular PGE
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Fig. 1. Photocurrent in QWs normalized by the light power P as a function of the
phase angle ϕ defining helicity. Measurements are presented for T = 300 K and λ = 76
µm. The insets show the geometry of the experiment. Upper panel: normal incidence
of radiation on p-type (113)A-grown GaAs/AlGaAs QWs (symmetry class Cs). The
current jx flows along the [11̄0] direction perpendicular to the mirror plane. Lower
panel: oblique incidence of radiation with an angle of incidence θ0 = −30◦ on n-type
(001)-grown InAs/AlGaSb QWs (symmetry class D2d or C2v). Full lines are fitted using
one parameter according to (6) (from [8])

is most easily conceivable for direct optical transitions between the heavy-hole
valence sub-band hh1 and conduction sub-band e1 in QWs of the Cs symmetry.
For the sake of simplicity we take the linear-k terms into account only in the
conduction sub-band assuming the following parabolic dispersion in the e1 and
hh1 subbands

Ee1,k,±1/2 = EQW
g +

�
2k2

2me
± βekx , E

v
hh1,k,±3/2 = −�

2k2

2mh
, (8)
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Fig. 2. Photocurrent in QWs normalized by the light power P as a function of the
incidence angle θ0 for right circularly polarized radiation σ+ measured perpendicularly
to light propagation (T = 300 K, λ = 76 µm). Upper panel: n-type (001)-grown
InAs/AlGaSb QWs . Lower panel: p-type (113)A-grown GaAs/AlGaAs QWs. Full lines
are fitted using (7) (from [8])

where EQW
g is the bandgap renormalized because of the quantum confinement of

electrons and holes. In Fig. 3a the allowed optical transitions are from j = −3/2
to s = −1/2 for the σ+ polarization and from j = 3/2 to s = 1/2 for the σ−
polarization. Under circularly polarized radiation with a photon energy �ω and
for a fixed value of ky, the energy and momentum conservation allow transitions
only from two values of kx. For the σ+ polarization these particular kx values of
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photogenerated electrons are

k±
x =

µ

�2 βe ±
[
2µ
�2 (�ω − EQW

g ) − k2
y +

( µ
�2 βe

)2
]1/2

, (9)

where µ is the reduced electron-hole mass memh/(me +mh). The corresponding
transitions are shown in Fig. 3a by the solid vertical arrows with their “center-
of-mass” shifted from the point kx = 0 by βeµ/�

2. Thus the average electron
velocity in the excited state,

v̄e,x =
�(k+

x + k−
x )

2me
− βe

�
= − µ

mh

βe

�
,

is non-zero and the contribution of k±
x photoelectrons to the current do not

cancel as in the case βe = 0. Consequently, a spin polarized net current in the x
direction results. Changing the photon helicity from +1 to −1 inverts the current
because the “center-of-mass” for this transitions is now shifted to −βeµ/�

2.
The asymmetric distribution of photoelectrons in the k-space decays within the
momentum relaxation time τe

p . However, under steady-state optical excitation
new photocarriers are generated resulting in a dc photocurrent. The photohole
contribution in considered in a similar way. Since the average hole velocity v̄h,x

coincides with v̄e,x, the final result for the interband circular photocurrent can
be presented as

jx = ev̄e,x(τe
p − τh

p )
ηcvI

�ω
Pc = −e(τe

p − τh
p )
βe

�

µ

mh

ηcvI

�ω
Pc ,

where ηcv is the fraction of the energy flux absorbed in the QW due to the
hh1 → e1 transitions, different signs of the electron and hole contributions reflect
opposite signs of the electron and hole charges. Note that the ratio I/(�ω) is the
flux of photons. If we add the term ±βvkx to the electron dispersion Ev

hh1,k,±3/2
in the valence band we obtain

jx = −e(τe
p − τh

p )
(
βe

mh
+
βh

me

)
µ

�

ηcvI

�ω
Pc . (10)

Above we considered a particular mechanism of the circular PGE. Actually
one can use the following general estimation for this effect

jCPGE = eτp
β

�

ηI

�ω
Pc , (11)

where η is the relative absorbance for the considered optical transitions, β is a
coefficient in the linear-k spin-dependent Hamiltonian and τp is a typical mo-
mentum relaxation time.

For more complicated band structures, the previous simple consideration is
invalid. Then, one needs to use a sophisticated kinetic theory operating with the
electron single-particle density matrix ρn′n(k) and the following general equation
of the electron current

j = e
∑

knn′
vnn′(k)ρn′n(k) . (12)
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Here the indices n, n′ enumerate the electronic states with a given value of
k and vnn′ is the matrix element of the velocity operator. If the states |n̄,−k〉
and |n,k〉 are related by the time inversion operation then one can write

vn̄n̄′(−k) = −vnn′(k) .

This means that the current (12) is contributed only by the anti-symmetrical
component of the density matrix

ρ
(−)
n′n(k) =

1
2
[ρn′n(k) − ρn̄′n̄(−k)] . (13)

For photoelectrons excited into the conduction subband e1 in a (001)-oriented
QW and described by the effective 2×2 Hamiltonian

H = E0
e1 +

�
2k2

2m∗ + βxyσxky + βyxσykx , (14)

(12) reduces to
j = e

∑

k

Tr
{

v̂(k)ρ(e)(k)
}
, (15)

and a similar equation can be written for the photohole contribution. Here,
ρ(e)(k) is the spin-density matrix and the velocity operator v̂(k) = �

(−1)∂H/∂k
has the components

v̂x(k) =
�kx

m∗ +
βyx

�
σy , v̂y(k) =

�ky

m∗ +
βxy

�
σx . (16)

In the momentum-relaxation time approximation, one has

j = e
∑

k

τe
pTr

{
v̂(k)ρ̇(e)(k)

}
, (17)

where components of the spin-density generation matrix ρ̇(e) are given by

ρ̇
(e)
s′s(k) =

π

�

∑

v,j

Me1,s′;v,j(k)M∗
e1,s;v,j(k) (18)

×
[
δ
(
Ee1,k,s′ − Ee

vkj − �ω
)

+ δ
(
Ee1,k,s − Ee

vkj − �ω
)]
,

Me1,s;v,j(k) is the matrix element of the interband optical transition (vkj) →
(e1,k, s). As soon as linear-k spin-dependent terms are taken into account in the
electron Hamiltonian and the light is circularly polarized, the anti-symmetrical
component of the generation matrix ρ̇(e)

s′s(k) is non-zero. The photo-hole contri-
bution to the photocurrent is considered in a similar way.

The spectral behavior of the interband circular PGE calculated for (001)-
grown QWs is presented in Fig. 3a. The four band edges jν → e1 are shown by
arrows. As the photon energy approaches the bandgap e1-hh1 the photocurrent
tends to zero. This can be understood taking into account that, for QWs of
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Fig. 3. (a) Microscopic picture describing the origin of spin polarized photocurrents.
The essential ingredient is the the spin splitting of the electron and/or hole states due
to linear-k terms. (b) Calculated spectrum of the interband circular photocurrent due
to SIA (solid line) and BIA (dashed line) electron spin splittings in a 100-Å wide QW.
The arrows indicate the absorption edges for the four optical transitions [11]

the C2v or D2d symmetry, the circular photocurrent appears only under oblique
incidence, the optical transitions have to be allowed both in the in-plane and
normal-to-plane polarizations, but for purely heavy hole states the interband
transitions in the polarization e ‖ z are forbidden. The circular photocurrent
due to the hh1 → e1 becomes nonzero because of an admixture of light-hole
states in the heavy-hole subband hh1 at k 
= 0. At small values of �ω − EQW

g

the photocurrent is proportional to (�ω−EQW
g )2 for the BIA linear-k term (63)

in the electron Hamiltonian (βxy = βyx) and to the first order of �ω − EQW
g

for the SIA linear-k term (βxy = −βyx) [11]. One can see from Fig. 3b that the
spectral variations of the BIA and SIA contributions to the photocurrent differ
dramatically in the whole frequency region studied.

Since the characteristic spin splitting is usually small compared to the in-
homogeneous broadening and kinetic energy of free carriers, the photocurrents
generated under interband, intersubband or intrasubband optical excitation are
mainly contributed by terms linear in the coefficients β. In this case one can write
the following general relation between the photo-galvanic tensor γ and tensor
β(ν) describing the linear-k terms in the ν-th conduction or valence subband ν

γλµ ∝ β
(ν)
µλ . (19)

In particular, the BIA and SIA terms give rise to independent contributions
to the circular PGE and one has

jx ∝ IPc(β
(ν)
BIA − β

(ν)
SIA)oy , jy ∝ IPc(β

(ν)
BIA + β

(ν)
SIA)ox , (20)
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where
β

(ν)
BIA = (β(ν)

xy + β(ν)
yx )/2 , β(ν)

SIA = (β(ν)
xy − β(ν)

yx )/2 .

Note that in Appendix the coefficients βBIA and βSIA are introduced as −β1
and β2, see (63) and (64). It is instructive to rewrite (20) in terms of the current
components in the principal axes x1 ‖ [100], x2 ‖ [010] and to obtain

j1 ∝ IPc(β
(ν)
BIAo1 − β

(ν)
SIAo2) , j2 ∝ IPc(−β(ν)

BIAo2 + β
(ν)
SIAo1) (21)

where o1, o2 are the components of the unit vector ô along x1 and x2. It is worth
to mention that the BIA and SIA linear-k terms give rise to many spin-dependent
phenomena in QWs such as an existence of beats in the Shubnikov-de Haas
oscillations, spin relaxation, splitting in polarized Raman scattering spectra,
and positive anomalous magnetoresistence. However, in (001)-grown QWs, the
BIA and SIA spin-orbit splittings cannot be distinguished in these experiments,
particularly if one of the splitting mechanisms is dominating and the electron
energy dispersion is uniaxially invariant. On the other hand, the circular PGE
suggests a clear and effective way to identify the spin-splitting mechanism in
(001)-oriented QWs: under oblique optical excitation by the circularly polarized
light with the plane of incidence containing the principal axis 1 or 2, the BIA- and
SIA-related circular photocurrents are respectively parallel and perpendicular to
the incidence plane.

Next, we turn to a more detailed discussion of the circular PGE for the
e1 → e2 intersubband transitions. The circular photocurrent is a sum of two
contributions

j = j(e2) + j(e1)

= e
∑

k

[
τ (2)
p Tr

{
v̂(e2)(k)ρ̇(e2)(k)

}
(22)

+τ (1)
p Tr

{
v̂(e1)(k)ρ̇(e1)(k)

}]
,

respectively, due to the asymmetry of the distribution in k-space of the electrons
excited to the subband e2 and the electrons that stay in the subband e1. Here,
τ

(ν)
p is the electron momentum relaxation time in the subband ν. The generation

matrix ρ̇(e2)(k) for incoming electrons is similar to (18). Therefore, it will suffice
to present here the expression for the generation matrix in the e1 subband

ρ̇
(e1)
s′s (k) = −π

�

∑

j

Me2,j;e1,s(k)M∗
e2,j;e1,s′(k)

×
[
f0(Ee1,k,s)δ (Ee2,k,j − Ee1,k,s − �ω) (23)

+f0(Ee1,k,s′)δ (Ee2,k,j − Ee1,k,s′ − �ω)
]
,

where the indices j, s, s′ enumerate the spin-split eigenstates and the factor −1
means that the electrons are outgoing from the e1 subband. Note that the order
of indices s, s′ in the product Me2,j;e1,s(k)M∗

e2,j;e1,s′(k) differs from that for
ingoing electrons, see (18).



32 E.L. Ivchenko

In order to make the physics more transparent, we will first consider the
intersubband circular photocurrent generated under normal incidence in QWs
of the Cs symmetry, say in (113)-grown QWs, and use the appropriate coordinate
system x, y, z with z ‖ [113]. The electron energy spectrum is given by

Eeν,k,s = E0
ν +

�
2k2

2m∗ ± βνkx , (24)

where βν = β
(ν)
zx and, for the sake of simplicity, we neglect nonparabolicity effects

assuming the effective mass m∗ to be the same in both subbands. For the direct
e2-e1 transitions, the energy and momentum conservation laws read

E21 + (s′β2 − sβ1)k = �ω .

where E21 is the Γ -point gap E0
2 − E0

1 and s′, s = ±1/2. In the polarization
e ⊥ z, the direct intersubband absorption is weakly allowed only for the spin-flip
transitions, (e1,−1/2) → (e2, 1/2) for σ+ photons and (e1, 1/2) → (e2,−1/2) for
σ− photons. Particularly, under the σ+ photoexcitation the electrons involved
in the transitions have the fixed x-component of the wave vector

k21 =
�ω − E21

β2 + β1
(25)

and velocity

v(eν)
x =

�k21

m∗ +
βν

�
. (26)

It follows then that the circular photocurrent can be written as

j(e1)x = e
(
v(e2)

x τ (2)
p − v(e1)

x τ (1)
p

) η21I
�ω

Pc , (27)

where η21 is the absorbance or the fraction of the energy flux absorbed in the
QW due to the transitions in consideration, v(eν)

x is given by (26) and minus
in the right-hand side means that the e1-electrons are removed in the optical
transitions.

In available QW structures the inhomogeneous broadening of the gap E21
exceeds the width of absorption spectrum in an ideal QW. The inhomogeneous
broadening is taken into consideration by multiplying the photocurrent j as a
function of E21 by the distribution function F (E21) of the gaps E21 and inte-
grating over E21. The convolution of the current (27) with the inhomogeneous
distribution function leads to

jx =
e

�
(β2 + β1)

[
τ2 η21(�ω) + (τ1 − τ2) Ē

d η21(�ω)
d �ω

]
IPc

�ω
, (28)

where η21 ∝ F (�ω) is the absorbance calculated neglecting the linear-k terms
but taking into account the inhomogeneous broadening and Ē is the mean value
of the 2D electron energy, a half of the Fermi energy EF for a degenerate 2D
electron gas and kBT for a non-degenerate gas.
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In case of the e2-e1 transitions in (001)-grown QWs one should start from
the spin Hamiltonian

Hν = E0
eν +

�
2k2

2m∗ + β(ν)
xy σxky + β(ν)

yx σykx (29)

and the intersubband matrix elements of the velocity operator

||e · vs′
zsz

|| = v21

[
ez Λ(ex − iey)

−Λ(ex + iey) ez

]
, (30)

v21 = −i �

m∗

∫
dzϕe2(z)

d

dz
ϕe1(z) , Λ =

E21∆(2Eg +∆)
2Eg(Eg +∆)(3Eg + 2∆)

written in the basis of spin states with sz = ±1/2. Here ϕeν(z) is the electron
envelope function in the subband eν, Eg and ∆ are the band gap and spin-orbit
splitting of the valence band in the well material. In order to perform a cal-
culation taking into account all powers of βλµ one needs to use e(22, 23) in a
straightforward way. As soon as we are interested in contributions to photocur-
rents linear in β we can set all β’s to zero except for one and proceed similarly
to the Cs-symmetry case. For example, we retain the term β

(ν)
yx σykx in (29) and

disregard the term proportional to βxy. The corresponding current is induced in
the x-direction perpendicularly to the plane (y, z) of oblique incidence:

jx ∝ i(e × e∗)y = i(eze
∗
x − exe

∗
z) = Pc oy . (31)

Then, the eigenstates have a fixed spin component on the y axis and the
spin split energies are determined by (24) where βν = β

(ν)
zx is changed by β

(ν)
yx

and ± means spin states with sy = ±1/2. Since the component ez is present in
(31) and the spin under z-polarized transitions is conserved, see (30), only spin-
conserving processes (e1, sy) → (e2, sy) contribute to the circular photocurrent
jx. From (30) one can find the corresponding matrix elements of the velocity
operator

〈e2, sy|e · v̂s′
zsz

|e1, sy〉 = v21(ez + 2iΛsyex)

and, hence,

|〈e2, sy|e · v̂s′
zsz |e1, sy〉|2 = |v21|2(|ez|2 − 2ΛsyPcoy) , (32)

where the term quadratic in Λ is neglected. The final result for the circular
photocurrent reads

jx = −Λe
�
(β(2)

yx − β(1)
yx )

[
τ2 η21(�ω) + (τ1 − τ2) Ē

d η21(�ω)
d �ω

]
IPc

�ω
oy , (33)

where η21 is the absorbance in the polarization e ‖ z.
An important conclusion is that the photocurrents (28) and (33) change

their signs within the resonance absorption spectrum. The sign inversion of the
circular photocurrent in the resonant e2-e1 transition region has been recently
observed in n-type GaAs/AlGaAs QW samples [12].
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In contrast to electrons in the conduction band, the energy dispersion of
holes in the valence band of QWs is essentially nonparabolic and intersubband
absorption can involve simultaneously different pairs of subbands hhν and hhν′.
However, with some modifications of the theory and complications in calculations
the intersubband circular CPE in p-doped samples can be considered similarly
to that in n-QWs.

Now we turn to intrasubband optical transitions

(e1,k, s) + �ω → (e1,k′, s′)

in the lowest electron subband e1. They are indirect in the k space, occur due
to additional scattering by phonons or static imperfections and involve virtual
intermediate states. This situation is realized in n-doped QWs for photon en-
ergies to be not high enough in order to excite direct intersubband transitions.
The intrasubband photocurrent is given by the general equation (17) where the
generation matrix is a sum of contributions due to the ingoing and outgoing
electrons. The corresponding generation matrices have the form

ρ̇
(out)
s′s (k) = −π

�

∑

k′j

M ind
k′j,ksM

ind ∗
k′j,ks′

×
[(
f0

ks′ − f0
k′j
)
δ (Ek′,j − Ek,s′ − �ω) (34)

+
(
f0

ks − f0
k′j
)
δ (Ek′,j − Ek,s − �ω)

]
,

ρ̇
(in)
j′j (k′) =

π

�

∑

ks

M ind
k′j′,ksM

ind ∗
k′j,ks

×
[(
f0

ks − f0
k′j
)
δ (Ek′,j − Ek,s − �ω) (35)

+
(
f0

ks − f0
k′j′

)
δ (Ek′,j′ − Ek,s − �ω)

]
.

Here, Ek,s ≡ Ee1,k,s, f0
ks is the electron distribution function in the e1 subband

and M ind
kj,ks is the matrix element of the indirect optical transition. In the second

order of the perturbation theory it is given by

M ind
k′j,ks =

∑

n

(
Ve1,k′,j;nkMnk;e1,k,s

Enk − Ee1,k,s − �ω
+
Me1,k′,j;nk′Vnk′;e1ks

Enk′ − Ee1,k,s ± �Ω

)
, (36)

where the index n enumerates the intermediate states, Mn′k;nk and Vn′k′;nk

are the matrix elements of the electron-photon and electron-phonon or electron-
defect interaction, Ω is the phonon frequency, the sign ± corresponds to emission
and absorption of phonons. For the scattering by static defects Ω is set to zero.
An important point is that indirect transitions via intermediate states in the
same subband do not contribute to the circular PGE. The effect appears if virtual
processes involve intermediate states in other bands or subbands, n 
= e1.

2 Spin-Galvanic Effect

The mechanisms of the circular PGE discussed so far are linked to the asym-
metry in the momentum distribution of carriers excited in optical transitions
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which are sensitive to the light circular polarization due to selection rules. Now
we discuss an additional possibility to generate a photocurrent sensitive to the
photon helicity [13,14]. In a system of free carriers with non-equilibrium spin-
state occupation but equilibrium energy distribution within each spin branch,
the spin relaxation or Larmor precession in an external magnetic field can be ac-
companied by generation of an electric current. Phenomenologically, this linkage
between an electric current and the total electronic spin s is described by

jλ =
∑

µ

Qλµsµ . (37)

The symmetry of the second-order pseudo-tensor Q coincides with that of
the tensor γ describing the circular PGE, see (1). Similarly, its non-vanishing
components can exist in non-centrosymmetric systems belonging to one of the
gyrotropic classes. In (001)-oriented QWs of the C2v symmetry equation (37)
reads

jx = Qxysy , jy = Qyxsx . (38)

If the non-equilibrium spin is produced by optical orientation and the spin
sµ is proportional to the degree of light circular polarization Pc the current
generation can be regarded just as another mechanism of the circular PGE.
However, the non-equilibrium spin s can be achieved both by optical and non-
optical methods, e.g., by electrical spin injection, and in fact (37) presents an
independent effect called the Spin-Galvanic Effect. Here, we bear in mind spin-
induced electric currents that appear under uniform distribution of the spin
polarization in the 3D-, 2D- or 1D space, respectively in a bulk semiconductor, a
QW and a quantum wire. In this sense the spin-galvanic effect differs from surface
currents induced by inhomogeneous spin orientation [15] and other phenomena
where the spin current is caused by gradients of potentials, concentrations etc.,
like the Spin-Voltaic Effect which occurs in inhomogeneous samples, e.g., the
‘paramagnetic metal-ferromagnetic’ junction or p-n junction.

Usually the circular photo-galvanic and spin-galvanic effects are observed si-
multaneously under illumination by circularly polarized light and do not allow
experimental separation. However, they can be separated in time-resolved mea-
surements. Indeed, after removal of light or under pulsed photoexcitation the
circular photocurrent decays within the momentum relaxation time τp whereas
the spin-galvanic current decays with the spin relaxation time τs. Next we consi-
der a geometry of experiment under steady-state photoexcitation which allows to
observe the spin-galvanic effect and exclude the circular PGE [14]. The geometry
is depicted in inset in Fig. 4. The circularly polarized light is incident normally
to the interface plane (001) of a QW, the light absorption yields a steady-state
spin orientation s0z in the z direction proportional to the spin generation rate ṡz.
The symmetry of (001)-grown QWs forbids generation of a current proportional
to the normal component of s. To obtain an in-plane component of the spins,
necessary for the spin-galvanic effect, a magnetic field B ‖ x is applied. Due to
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Fig. 4. Current jx as a function of magnetic field B for normally incident right-handed
(open circles) and left-handed (filled circles) circularly polarized radiation at λ = 148
µm and radiation power 20 kW. Measurements are presented for an n-GaAs/AlGaAs
single heterojunction at T = 4.2 K. Curves are fitted from (39) using the same value
of the spin relaxation time τs and scaling of the jx value for both the solid and dashed
curves (from [14])

Larmor precession a non-equilibrium spin polarization sy is induced,

sy = − ΩLτs⊥
1 + (ΩLτs)2

s0z , (39)

where τs = √
τs‖τs⊥, τs‖, τs⊥ are the longitudinal and transverse electron spin

relaxation times, ΩL is the Larmor frequency. The photocurrent measured in the
x direction is shown in Fig. 4 as a function of the magnetic field for two oppo-
site circular polarizations of the light. In accordance with the phenomenological
equations (38) and (39) the current jx exhibits a non-monotonous variation with
the magnetic field. Comparison with theory allows to find a product gτs and the
spin relaxation time if the electron g-factor is known.

There are two different microscopical mechanisms of the spin-galvanic effect,
namely, kinetic and relaxational [13]. The experimental data of Fig. 4 can be un-
derstood in terms of the kinetic mechanism. It is inherently connected with the
spin dependency of matrix elements, Mk′s′,ks, of electron scattering by impu-
rities, other static defects and phonons. It is convenient to represent the 2×2
matrix M̂k′k as a linear combination of the unit matrix Î and Pauli matrices as
follows

M̂k′k = Ak′kÎ + σ · Bk′k , (40)
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Fig. 5. Microscopic origin of the spin-galvanic current in the presence of k-linear terms
in the electron Hamiltonian. The σykx term in the Hamiltonian splits the conduction
band into two parabolas with the spin ±1/2 in the y direction. If one spin subband
is preferentially occupied, asymmetric spin-flip scattering results in a current in the x
direction. The rate of spin-flip scattering depends on the value of the initial and final
k-vectors. There are four distinct spin-flip scattering events possible, indicated by the
arrows. The transitions sketched by dashed arrows yield an asymmetric occupation of
both subbands and hence a current flow. If, instead of the spin-down subband, the
spin-up subband is preferentially occupied the current direction is reversed

where A∗
k′k = Akk′ , B∗

k′k = Bkk′ due to hermiticity of the interaction and
A−k′,−k = Akk′ , B−k′,−k = −Bkk′ due to the symmetry under time inversion.

The spin-galvanic current observed in the geometry of Fig. 4 is caused by
the asymmetric spin-flip scattering of spin-polarized electrons in the systems
with k-linear contributions to the effective Hamiltonian. Figure 5 illustrates the
electron energy spectrum with the βyxσykx term included. Spin orientation in
the y direction causes an unbalanced population in the spin-down and spin-
up branches. Spins oriented in the y direction are scattered along kx from the
higher filled branch, say the spin-up or |1/2〉y branch, to the less filled branch
| − 1/2〉y. The matrix elements for these spin-flip processes are proportional to
the components Bk′k,x and Bk′k,z of the vector Bk′k in (40).

Four different spin-flip scattering events are schematically sketched in Fig. 5
by arrows. Their probability rates depend on the values of the wave vectors of
the initial and final states. Spin-flip transitions shown by solid arrows have the
same rate. They preserve the symmetric distribution of carriers in the branches
and, thus, do not yield a current. The two processes shown by broken arrows
are not equivalent and generate an asymmetric carrier distribution around the
branch minima in each spin branch. This asymmetric distribution results in a
current flow along the x direction.

In considering the relaxational mechanism of the spin-galvanic effect, we can
ignore the spin-dependence of the scattering matrix elements but should retain
quantum corrections of the order of H(1)/Ē, where Ē is the average electron ki-
netic energy. Moreover, we can apply the electron spin density matrix formalism
and assume the following hierarchy of relaxation times to be fulfilled

τp � τε � τs, τ0 , (41)
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where τp, τε, τs are the electron momentum, energy and spin relaxation times
respectively, and τ0 is the electron lifetime in case of the interband optical photo-
excitation. Then the spin-galvanic current related to the relaxation mechanism
may be presented as [13]

j = −eNeτp∇k

(
Ω

(1)
k · Ṡ

)
. (42)

Under normal incidence of the light on a (001)-grown QW the vector Ṡ is
directed along z and the current is zero. Thus, the relaxational mechanism makes
no contribution to the spin-galvanic current in the set-up of Fig. 4 and the latter
is completely related to the kinetic mechanism.

The radiation of the CO2 laser causes direct e2-e1 transitions in GaAs/
AlGaAs MQWs and can induce the resonant spin-galvanic current at normal
incidence of radiation in the presence of an in-plane magnetic field as this effect
was previously observed under intrasubband transitions, see Fig. 4. Since the
spin generation rate Ṡz ∝ K⊥ ∝ Kz, where K⊥,Kz are the light absorption
coefficients in the polarization e ⊥ z and e ‖ z, respectively, the spectral beha-
vior of the spin-galvanic current must coincide with the absorption spectrum.
One can see from Fig. 6 that the wavelength dependence of the spin-galvanic
effect obtained between 9.2 µm and 10.6 µm indeed repeats the spectrum of
the intersubband absorption. The interplay of the Rashba and Dresselhaus spin
splitting of the conduction band has been revealed in experiments on resonant
intersubband photogalvanic and spin-galvanic effects in n-type GaAs QW struc-
tures [17].
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Fig. 6. Absorption spectrum (full line) of an n-doped (001)-grown GaAs/AlGaAs
MQW structure (a = 70 Å) obtained from transmission in a multiple-reflection wave-
guide geometry, see the inset. Points show spectral dependence of the spin-galvanic
current caused by spin orientation due to direct optical transitions between e1 and e2
conduction subbands [16]



Circular Photo-Galvanic and Spin-Galvanic Effects 39

3 Saturation of Photocurrents at High Light Intensities

Before we turn to discussing the saturation of photocurrents with increasing light
intensity, we give a brief information concerning the linear PGE. For this effect,
the phenomenological equation (1) in QWs of the C2v symmetry reduces to

jLPGE,x = χxxz (exe
∗
z + eze

∗
x) I , jLPGE,y = χyyz

(
eye

∗
z + eze

∗
y

)
I . (43)

In symmetrical QWs, the point-group D2d, the pair of coefficients are linearly
dependent, χxxz = −χyyz.

The Cs symmetry allows both circular and linear PGEs for normal incidence
because in this case the tensors γ and χ have the additional non-zero components
γxz, see (2), χxxy = χxyx, χyxx and χyyy. As a result, under normal incidence
one has

jx =
[
γxzPc + χxxy

(
exe

∗
y + eye

∗
x

)]
I , jy =

(
χyxx|ex|2 + χyyy|ey|2

)
I . (44)

In particular, for linearly polarized light

jLPGE,x = Iχxxy sin 2α , jLPGE,y = I (χ+ + χ− cos 2α) , (45)

where χ± = (χyxx ±χyyy)/2 and α is the angle between the plane of polarization
and x. Figure 7 presents the measured dependence of jx and jy as a function of
the angle α and the fit to (45) for a p-type SiGe (113)-grown asymmetrical QW
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Fig. 7. Photogalvanic current in a (113)-grown Si0.75Ge0.25(5 nm)/Si single QW nor-
malized by the light power P as a function of the phase angle ϕ. The results are obtained
under normal incidence of irradiation at λ = 280 µm at room temperature. The full line
is fitted after (46). Broken and dotted lines show jx ∝ sin 2ϕ and jx ∝ sin 2ϕ cos 2ϕ,
respectively (from [9])
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structure. In the experimental setup, where the laser light is linearly polarized
along x and a λ/4 plate is placed between the laser and the sample, (44) takes
the form

jx = I (γxz + χxxy cos 2ϕ) sin 2ϕ , jy = I (χ+ + χ− cos 2ϕ) , (46)

where ϕ is the angle between the initial plane of linear polarization and the
optical axis of the polarizer. The circular and linear polarizations of the incident
light vary with ϕ in accordance to Pc = cosϕ, see (5), and Pl = sinϕ. In Fig. 7
experimental data and a fit to these functions are presented for the same p-type
SiGe (113)-grown QW structure.

The linear PGE was observed in some insulators as early as the 1950s, and
possibly even earlier, but was correctly identified as a novel phenomenon only
in 1974-75 [18,19]. In semiconductors, the linear PGE was first observed on
Tellurium [20,21] and then studied in detail on p-GaAs [22].

Microscopically, a current of the linear PGE consists of the so-called ballistic
and shift contributions [23–26]. The first of them is described by the conventional
equation

j = e
∑

nn′
Wn′n(vn′τ (n′)

p − vnτ
(n)
p ) . (47)

Here the index n describes all quantum numbers characterizing the electron ei-
genstates, namely the band and subband labels, spin sublevel and wave vector k;
the probability transition rate from the state n to n′ is given by Fermi’s golden
rule

Wn′n =
2π
�

|Mn′n|2 (fn − fn′)δ(En′ − En) , (48)

Mn′n is the transition matrix element, vn and τ (n)
p are the electron velocity and

momentum relaxation time in the state n, fn is the distribution function, or the
occupation, of the state n. The energy En includes the photon or phonon energy
in the initial or final state. Equation (47) is a contribution to the general expres-
sion for the current (12) of diagonal components ρnn = fn of the electron density
matrix and of the velocity vnn ≡ vn. The ballistic current is non-zero only if one
simultaneously includes in Mn′n carrier interaction both with a photon and with
another particle, a phonon, impurity or static defect, another electron or hole, in-
cluding a geminate partner photocreated in the same photoabsorption process. In
other words one needs to go beyond the Born approximation in calculatingMn′n.

The second contribution to the linear PGE current comes from inclusion in
(12) of the non-diagonal components ρnn′ and vnn′ with n′ 
= n. This current
was shown [25] to originate from the shift of the wave packet’s center-of-mass in
quantum transitions and can be written as

j = e
∑

nn′
Wn′nRn′n . (49)

For the shift in the real space we have

Rn′n = − (∇k + ∇k′)Φn′n + Ωn′ − Ωn , (50)
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where Φn′n is the phase of the transition matrix element, k and k′ are the
wave vectors in the states n and n′, Ωn is the diagonal matrix element of the
coordinate

Ωn = i

∫
u∗

n∇kun dr ,

and un(r) is the Bloch periodical amplitude. In a steady-state regime, when the
processes of generation, scattering and recombination are taken altogether into
consideration, the contributions associated with Ωn vanish since they describe
the charge static redistribution. The first term in the right-hand side of (50) can
be rewritten as

Rn′n = − Im {M∗
n′n (∇k + ∇k′)Mn′n}

|Mn′n|2 . (51)

This form is useful in practical calculations.
The linear PGE can be also induced in non-centrosymmetric superlattices

(SLs), i.e. in a saw-tooth SL, and multiple quantum well (MQW) structures, i.e.
in MQWs with asymmetric double wells, under illumination with unpolarized
light [27–30]. The photocurrent is generated along the growth direction z because
of the lack of reflection symmetry z → −z. Note that in MQWs the effect has
a threshold at the edge of transitions between quantized and continuum states,
the so-called bound-to-continuum or above-barrier transitions.

Now, we concentrate on non-linear behavior of the linear and circular PGE
with increasing the light intensity due to saturation or bleaching of the absorp-
tion. Since the saturation effect was observed on p-doped QW structures [31]
we consider direct intersubband optical transitions from the heavy-hole subband
hh1 to higher subbands, say the lh1 subband.

Spin sensitive bleaching can be analyzed in terms of the following simple
model taking into account both optical excitation and non-radiative relaxation
processes. The probability rates for direct optical transitions from the hh1 states
with m = ±3/2 to higher subbands are denoted as W±. For linearly polarized
light, W+ and W− are equal. For the circular polarization, right-handed, σ+, or
left-handed, σ−, the rates W± are different but, due to time inversion symmetry,
satisfy the condition W+(σ±) = W−(σ∓). The photo-excited holes are assumed
to lose their spin orientation in the course of energy relaxation to the bottom of
the hh1 subband, due to rapid spin relaxation in hot states. Thus, spin orien-
tation occurs only in this subband. If p+ and p− are the 2D densities of heavy
holes occupying the subbands (hh1,+3/2) and (hh1,−3/2), respectively, then
the rate equations for p± can be written as

∂p+

∂t
+
p+ − p−

2τs
= −W+ +

1
2
(W+ +W−) , (52)

∂p−
∂t

+
p− − p+

2τs
= −W− +

1
2
(W+ +W−) .

The second terms on the left-hand side describe the spin relaxation trying
to equalize the population in the (hh1,±3/2) spin branches. The first terms on
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the right-hand side describe the removal of holes from the hh1 subband due
to photo-excitation while the second terms characterize the relaxation of holes
which come down to the (hh1,+3/2) and (hh1,−3/2) states with equal rates. If
the laser pulse duration is longer than any relaxation time, the time derivatives
in (52) can be omitted and, instead of this equation, we have

p+ − p−
τs

= −(W+ −W−) . (53)

The hole-removal rates can be presented in the form

W+ =
1
2
ηI

�ω
(1 − ρ0Pc)(1 + ρ) , W− =

1
2
ηI

�ω
(1 + ρ0Pc)(1 − ρ) , (54)

where ρ is the hole spin polarization degree (p+−p−)/(p++p−), η is a function of
the light intensity I, the parameter ρ0 is defined as the ratio (W− −W+)/(W− +
W+) for the σ+-polarized radiation of low enough intensity where η is constant
andW± is proportional to I. The factors 1±ρ0Pc take into account the sensitivity
of optical transitions to the circular polarization of light and spin of the involved
particle. The factors 1 ± ρ take into account that the transition probability rate
depends on the occupation number of the initial state and, hence, on the hole
spin polarization. Substitution of (54) into (53) leads to the linear equation for ρ

ps

τs
ρ =

ηI

�ω
(ρ0Pc − ρ) , (55)

where ps is the hole density and we rewrote p+ − p− as psρ. The solution reads

ρ = ρ0Pc
τsηI/(ps�ω)

1 + [τsηI/(ps�ω)]
. (56)

Bleaching of absorption with increasing intensity of linearly-polarized light is
described phenomenologically by the function

η(I) =
η0

1 + I
Ise

, (57)

where η0 = η(I → 0) and Ise is the characteristic saturation intensity controlled
by energy relaxation of the 2D hole gas. Since the photocurrent of linear PGE,
jLPGE, induced by the linearly polarized light is proportional to ηI, one has

jLPGE

I
∝ 1

1 + I
Ise

. (58)

The circular current jCPGE induced by the circular polarized radiation is
proportional to W+ − W− ∝ ρ. Substituting η(I) from (57) into (56) we find
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Fig. 8. Photogalvanic current jx normalized by the intensity I as a function of I for
circularly and linearly polarized radiation at T = 20 K. The inset shows the geome-
try of the experiment; ê indicates the direction of the incoming light. The current jx

flows along [11̄0] direction at normal incidence of radiation on p-type (113)A-grown
GaAs/AlGaAs QWs. In order to obtain the circular PGE right or left circularly po-
larized light has been applied. To obtain the linear PGE linearly polarized radiation
with the electric field vector E oriented at 45◦ to the x direction was used. The mea-
surements are fitted to jx/I ∝ 1/(I + I/Is) with one parameter Is for each state of
polarization (full line: circular, broken line: linear) (from [31])

after some development
jLPGE

I
∝ 1

1 + I
(

1
Ise

+ 1
Iss

) , (59)

where Iss = ps�ω/(η0τs).
The measurements illustrated in Fig. 8 indicate that the photocurrent jx at

a low power level depends linearly on the light intensity and gradually saturates
with increasing intensity, jx ∝ I/(1 + I/IL,C

s ), where IL,C
s is the saturation

parameter for linearly and circularly polarized radiation. This corresponds to a
constant absorbance at low values of I and decreasing absorption with rising I.
From (58, 59) we obtain

IL
s = Ise , I

C
s =

IseIss
Ise + Iss

. (60)

One can see from Fig. 8 that the measured saturation intensities IL,C
s are

different, namely IC
s < IL

s . This is in agreement with the theory. The saturation
of the absorption of linearly polarized radiation is governed by the energy relaxa-
tion time τε whereas in case of the circular polarization it is governed by both τε
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and τs. If τs is of the order of τε or larger, the saturation becomes spin sensitive
and the saturation intensity of circularly polarized radiation drops below that
for the linear polarization.

Taking into account that Iss = IL
s I

C
s /(I

L
s − IC

s ) and using the measured
values of IL

s , IC
s one can estimate the parameter Iss = ps�ω/(η0τs) and even the

time τs. The latter is possible if the absorbance η0 is known from an independent
experiment or theoretical calculation, see details in [31,33].

It is worth to mention effects which are inverse to the circular PGE. In the
absence of magnetic field the dc current in a QW should induce the circular
dichroism of the optical absorption or the circular polarization of the photolu-
minescence. Up to now the effect of the electric current on the optical activity
has been observed in bulk gyrotropic Tellurium [32].

4 Summary

A non-equilibrium uniform spin polarization obtained by optical orientation in-
duces an electric current in QW structures of the point symmetry D2d, C2v or Cs

belonging to gyrotropic crystal classes. In symmetrical zinc-blende-based QWs
the gyrotropy naturally appears due to the lack of inversion centers in the bulk
basic material as well as the quantum confinement effect. In QWs grown from
diamond-lattice materials, like Si and Ge, which possess a center of inversion,
the gyrotropy appears due to artificial asymmetry of the grown structures.

The transformation of spin polarization into an electric current occurs due
to the spin-dependent odd-in-k contribution to the electron or hole effective
Hamiltonian. There are two different microscopic mechanisms of spin photo-
currents, namely, circular photo-galvanic effect and spin-galvanic effect. Usually
both effects appear simultaneously and the measured current is a sum of the two
contributions. However, in particular cases they can be separated.

The experimental results on spin photocurrents due to homogeneous spin
polarization are in good agreement with the phenomenological theory. Both me-
chanisms of spin photocurrents as well as the removal of spin degeneracy in
the k-space are described by second rank pseudo-tensors. Therefore macrosco-
pic measurements of photocurrents in different geometric configurations allow to
conclude on details of the microscopic spin-orbit interaction. In particular, the
relation between Dresselhaus- and Rashba-like terms (including interface inver-
sion asymmetry) may be estimated. Furthermore, the macroscopic symmetry of
QWs may easily be determined.

Most recently the circular PGE has been predicted for gyrotropic 1D systems
like carbon nanotubes of spiral symmetry [51]. The effect is caused by coupling
between the electron wave vector along the tube’s principal axis and the orbital
momentum around the tube circumference.

Spin photocurrents were applied to investigate the mechanisms of free-carrier
spin relaxation under monopolar spin orientation where only one type of charge
carriers is involved.

In above-cited experimental works the circular PGE has been detected in
QWs only under intraband transitions by excitation with infrared radiation.
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Recently the first observation of this effect has been reported at interband ex-
citation in GaAs-based QWs [52]. Further experiments on interband circular
PGE will open new possibilities in studies of interband optical spin orientation
of free carriers, spin relaxation mechanisms of hot and thermalized photocar-
riers, the role of bulk, structure and interface asymmetries in the spin splitting
of conduction- and valence-band subbands. Another subsequent important step
will be to perform experiments under short-pulse excitation and reveal the time-
resolved kinetics of the photocurrents related to the momentum, energy and spin
relaxation of photocarriers. The future work can also be directed towards exten-
sion of studies on one-dimensional objects (quantum wires and nanotubes), and
even on quantum-dot structures taking into account optical transitions between
zero-dimensional states in the dots and two-dimensional states in the wetting
layer.

More details concernning photo-galvanic effects in semiconductor nanostruc-
tures are presented in the book [53].
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Appendix. Spin Splitting of Electron Subbands:
Bulk- and Structure-Inversion Asymmetry

It is well-known that, in centrosymmetric crystals, the electronic state at each
band n and wave vector k is at least twofold degenerate (the so-called Kramers
degeneracy, or spin degeneracy). In crystals lacking a center of inversion, the
Kramers degeneracy of the Bloch states is lifted except for special points or li-
nes in the Brillouin zone. Particularly, in zinc-blende-lattice semiconductors like
GaAs, InAs, ZnSe, CdTe etc. (the class Td) the conduction band Γ6 and the
valence band Γ8 are respectively twofold and fourfold degenerate at the Γ point.
However, away from this point the conduction and valence bands are split into
non-degenerate spin branches, even at zero magnetic field. The spin-dependent
Hamiltonian can be constructed by expanding the effective Hamiltonian in po-
wers of k and applying the method of invariants. For the Td-symmetry crystals,
one can show that the spin-dependent term in the conduction-band Hamiltonian
appears starting with k3 [34]

Hc3 = γc

[
σxkx(k2

y − k2
z) + σyky(k2

z − k2
x) + σzkz(k2

x − k2
y)
]
, (61)

where σi are the Pauli matrices and x ‖ [100], y ‖ [010], z ‖ [001]. For the band
Γ8 the main contribution is given by a similar expression

Hv3 = γv

[
Jxkx(k2

y − k2
z) + Jyky(k2

z − k2
x) + Jzkz(k2

x − k2
y)
]
,
∑

i

Jiκi , (62)
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where Ji are the 4×4 matrices of the angular-momentum operators Ĵi in the
basis Y3/2,m. In contrast to the conduction band, the constant γv has a non-re-
lativistic nature. Indeed, this constant equals 2/3 of the similar constant in the
3×3 Hamiltonian for the non-relativistic valence band Γ15.

In heterostructures, QWs or SLs, grown from zinc-blende-lattice semicon-
ductors, the spin-dependent Hamiltonians contains both linear and cubic terms.
Particularly, in (001)-grown QWs with symmetrical interfaces (the D2d point-
group symmetry) the linear-k spin-dependent term in the conduction subband
e1 has the form [35]

HBIA = β1(σyky − σxkx), (63)

where β1 is a constant. This term can be obtained from the cubic-k term (61)
describing the removal of spin degeneracy of the conduction-band states in a
bulk semiconductor. Really, taking into account the quantum confinement effect
we can replace in (61) kz and k2

z by the average values 〈kz〉 = 0 and 〈k2
z〉 
= 0,

respectively, and arrive at (63) with β1 = γc〈k2
z〉. Here, the symbol 〈kl

z〉 means
the expectation value

∫
dzϕe1(z)k̂l

zϕe1(z) with ϕe1(z) being the electron envelope
function at the lowest subband e1 and k̂z = −i∂/∂z. Since the term HBIA is due
to the lack of inversion symmetry in the bulk material it is called the Bulk
Inversion Asymmetry (BIA) term which explains the subscript BIA. Sometimes
it is also called the Dresselhaus term [36].

In heterostructures with asymmetrical superstructural potential (the C2v

point group) there exists another spin-dependent contribution

HSIA = β2(σxky − σykx) (64)

which is called the Structure-Inversion Asymmetry (SIA) term, or the Rashba
term. The structure asymmetry can be related with non-equivalent normal and
inverted interfaces, external or built-in electric fields, compositionally stepped
QWs etc. The spin-orbit interaction term in the form of (64) was first predicted
in [37,38] for bulk polar hexagonal crystals with the wurtzite structure (the C6v

point symmetry). Nature of the similar term in an asymmetrical 2D system has
been analyzed by different authors [39–45] (see also [46] and references therein).
Note that anisotropic orientation of chemical bonds at the interfaces gives rise
to an additional contribution to the linear-k Hamiltonian, even in symmetrical
QWs [47,48]. This is the so-called Interface-Inversion Asymmetry (IIA) term.
Since it has the same structure as the contribution (63), they can be described
together by one inseparable Dresselhaus term with the common parameter β1.

By using the Cartesian coordinates x′‖[11̄0], y′‖[110], z‖[001] one can write
a sum of the BIA and SIA terms in the form

Hc1(k) =
1
2

(β−σx′ky′ − β+σy′kx′) , (65)

where β± = 2(β2 ± β1) and from now on k ≡ k‖. Introducing the effective
Larmor frequency Ωk (at zero magnetic field) by

Hc1 =
�

2
σ · Ωk (66)
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and comparing with (65) we obtain

Ωk,x′ = β−ky′/� , Ωk,y′ = β+kx′/� , Ωk,z = 0. (67)

Thus, in the parabolic approximation the resulting energy dispersion is

Ee1k = E0
e1 +

�
2k2

2m∗ ± 1
2

�Ωk ,

with the spin splitting given by

∆E = �Ωk =
√
β2

+k
2
x′ + β2−k2

y′ . (68)

If only one of the constants β1, β2 is nonzero then β2
− = β2

+ ≡ β2 and the
splitting �Ωk = βk is angular independent.

At low electron energies the spin splitting due to the linear-in-k term domi-
nates. At higher energies relevant to high temperatures or large concentrations,
the cubic-in-k term can be important as well.

The Rashba term can be presented in an invariant form as

HSIA = β2[σ × k] · N , (69)

where N is the unit vector directed along the normal to the interface. In a
symmetrical QW subject to a homogeneous electric field F ‖ z, the constant β2
can be crudely estimated as

β2 =
P 2

3
∆(2Eg +∆)
E2

g(Eg +∆)2
{
|e|F + V

[
ϕ2

e1(a/2) − ϕ2
e1(−a/2)

]}
,

where V is the conduction-band offset, the parameter P is defined by

P = i
�pcv

m0
, pcv = 〈S|p̂z|Z〉 ,

ϕe1(z) is the envelope calculated in the presence of electric field, and ±a/2 are
the interface coordinates.

The BIA contribution to the valence band effective Hamiltonian responsi-
ble for removal of spin degeneracy of the hole subbands can be obtained by
averaging the odd-in-k terms over the quantum-confined states hhν or lhν cal-
culated neglecting the spin splitting. Note that this procedure applied to the
non-relativistic term (62) does not lead to linear-k splitting of heavy-hole states
because the off-diagonal components Ji;±3/2,∓3/2 equal zero. The Rashba spin
splitting in 2D hole systems was analyzed by Winkler [49]. At small values of k,
the heavy-hole spin splitting is of third order, in qualitative difference with the
conduction-band and light-hole states in QWs.

Linear-in-k spin splitting of electron subbands in QWRs is described by a
Hamiltonian

H1 = (σ · β) kz , (70)
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where z is the principal axis of the wire and β is a constant vector, its non-zero
components are determined by symmetry of the structure. The effective Larmor
frequency defined according to (66) is equal to 2βkz/�. Depending on the sign
of kz it is directed parallel or anti-parallel to the fixed direction of β. This is
the main difference with QWs where the direction of Ωk is independent of k
only in asymmetrical QWs in the particular case β1 = ±β2 when either β+ or
β− vanish. In [50] a simple 3D model of an asymmetric QWR is introduced in
which the Rashba spin-orbit coupling (70) is derived from a realistic description
of the bulk semiconductor electronic structure.
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Nano-Photoluminescence
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Abstract. We discuss various modifications of spatially resolved photoluminescence
and their application in semiconductor spectroscopy. The methods described are micro-
photoluminescence (µ-PL) under global excitation, µ-PL imaging, and their extension
to nano-photoluminescence by using a confocal setup in combination with solid im-
mersion lenses (SIL). In particular we outline the implementation of SILs into a µ-PL
experiment and demonstrate their merits in terms of enhanced resolution and collec-
tion efficiency. We demonstrate the huge potential of spatially resolved photolumines-
cence by its application in the characterization of extended defects, in the ultra-high
precision spectroscopy of electron–phonon coupling, in the detection of coherent and
non-thermal transport of excitons on the length scale of the light wavelength, and in
single-dot spectroscopy.

1 Introduction

Photoluminescence (PL) is one of the most important methods to characterize
semiconductor structures and to investigate their electronic states. Since both
fundamental research as well as optoelectronic applications increasingly focus on
semiconductor nanostructures and on a length scale well below the wavelength
of light, PL has been developed into a local spectroscopy method.

There are several ways to achieve a spatial resolution of one micrometer
or less. Single nano-objects like quantum dots or wires can be addressed when
they are sufficiently separated in space or when they can be distinguished by
differing energies of their optical transitions. The number of nano-objects in
dense ensembles - like quantum dots laterally embedded in a wetting layer or a
quantum well [1] or interfacial islands [2] - can be significantly reduced e.g. by the
etching of mesas or by coating the sample surface leaving only nano-apertures
of typical sizes of 100 nm [3].

One can also realize sub-micron resolution in PL experiments by local excita-
tion, local detection, or a combination of both techniques. In far-field optics, the
resolution is limited by diffraction to the order of the light wavelength. This limi-
tation can be overcome by working in the near-field regime, where the diffraction
limit is not yet established. Scanning near-field optical microscopy (SNOM) [4],
designed according to this idea, realizes a resolution of less than 100 nm. These
conditions are typically achieved for either global excitation and local detection
with the SNOM or local excitation and global detection. For simultaneous lo-
cal excitation and detection one employs uncoated fiber tips for sufficient signal
strength [5]. The spatial resolution is then in the range of 100-200 nm. SNOM

H. Kalt, Nano-Photoluminescence, Lect. Notes Phys. 658, 51–70 (2005)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2005
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set-ups can be integrated into cryostats to work at low temperatures. The use
of picosecond laser pulses together with time-resolved detection schemes like a
streak camera allows the combination of high spatial and temporal resolution [6].
Finally, SNOM systems are intrinsically coupled to scanning surface microscopy
providing additional information on the surface morphology.

Despite these large number of merits of the SNOM one finds an attrac-
tive alternative for the investigation of semiconductors in PL set-ups based on
microscopes, the so-called micro-photoluminescence (µ-PL). These set-ups are
much more flexible and easier to implement, have a high collection efficiency
and achieve a spatial resolution (without any sample structuring) down to 200
nm. The typical resolution of a confocal µ-PL (for a review, see e.g. [7]) can
be enhanced to about 0.5 µm by increasing the effective numerical aperture
(NAeff) of the optical system. This can be realized for one by using reflective
optics, in particular parabolic mirrors resulting in a numerical aperture NA ≈ 1
[8]. A second approach are solid immersion lenses (SILs) placed on the surface
of the sample [9]. Both systems have the possibility, not given for an ordinary
SNOM, to individually shift the position of the high resolution detection spot
with respect to the excitation spot.

We will discuss in the following various implementations of µ-PL imaging
and spectroscopy and its enhancement by the use of solid immersion lenses to
nano-PL. We will focuss on the technical details of these methods and illustrate
their merits and limitations by giving typical examples of spectroscopic results.

2 Definition of Spatial Resolution

In a far-field optical system, the spatial resolution is limited by diffraction of the
light at the aperture of the imaging optics. This diffraction results in the fact
that a point source produces an Airy pattern in the image plane. The spatial
resolution is then often defined by the Rayleigh criterion. Two adjacent point
sources are here considerd to be spatially resolvable when the maximum of the
Airy pattern of the first light source coincides with the first minimum of the
Airy pattern of the second one. For practical purposes this criterion is difficult
to verify, because the minimum of an Airy pattern is typically not well defined
since its is hidden within the noise of the detection. A much easier way to measure
spatial resolution is to determine the half width at half maximum (HWHM) of
the maximum of the Airy pattern (Sparrow criterion). This definition of the
spatial resolution differs from the Rayleigh criterion by a factor of 2.

Taking into account not only the geometrical aperture NAobj of the imaging
objective, but also the fact that the refractive index n of the medium surrounding
the object affects the light diffraction one finds for the HWHM:

HWHM =
0.26λ
nNAobj

. (1)

This definition of the spatial resolution directly points out where to start with
its optimization. Of course one can, to some extent, increase the geometrical



Nano-Photoluminescence 53

(a) (b)CCD

global
excitation

confocal
excitation

pinhole

spectrometer
+ detection

microscope
objective

microscope
objective

sample sample
cryostat cryostat

SIL

Fig. 1. (a) µ-PL imaging under global excitation, (b) SIL-enhanced nano-PL based on
a confocal microscope

aperture NAobj. This is limited by the size of the aperture achievable without
introducing aberrations and by the working distance (distance of the objective
from the object). The latter is typically of the order of 10 mm when the object is
placed inside a cryostat and the objective is situated outside separated by a thin
window. Smaller working distances of a few mm are possible when the ojective
is also placed within the dewar. Then the sample can be immersed within an
immersion fluid to enhance the refractive index. But this is not realistic in the
case of semiconductors kept at He-temperature. Here on can use solid immersion
lenses (SILs) as will be described in Sect. 4. Finally one has to consider the influ-
ence of the detection scheme (pinhole in the image plane, CCD array detector)
and its interplay with the excitation scheme (e.g. in a confocal arrangement).

Figure 1 shows two modifications of spatially resolved photoluminescence,
namely a µ-PL set-up with global excitation (Fig. 1a) and a confocal set-up
enhanced by a SIL (Fig. 1b). With the set-up in (a) one can typically achieve a
spatial resolution of 350 nm (at a wavelength of 440 nm) while 220-250 nm are
typical for the set-up in (b). The objective used here has a working distance of
10 mm, a magnification of 20 and a numerical aperture of NAobj = 0.4. In the
following we want to discuss the merits of the different modifications and give
examples for their application in semiconductor spectroscopy.

3 µ-PL Under Global Excitation and µ-PL Imaging

Figures 2 and 3 demonstrate the use of µ-PL (set-up as in Fig. 1a) for PL imaging
and spectroscopy with high spatial resolution. The excitation source for the µ–
PL experiments is a continuous wave (cw) laser. A set of pinholes with different
sizes is installed in the image plane of the microscope to select the detection
area on the sample surface. By scanning the pinhole in the image plane (for
distances exceeding several 10 µm one has to scan the sample), one can detect
luminescence from different positions on the sample surface. The pinhole is then
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10µm

Fig. 2. (a) µ-PL image of a ZnSe QW showing aligned pairs of bright-spot defects, (b)
µ-PL spectra taken at various positions of the PL landscape in (a) [10]
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Fig. 3. (a) µ-PL image of a type-II GaAs/AlAs quantum well showing local type-I
band alignment. (b) macro-PL and (c) µ-PL of the sample [11]

imaged onto the entrance slit of a spectrometer. A shiftable set of a mirror and
a lens is installed in front of the spectrometer, reflecting and focusing the light
onto a CCD camera connected to a monitor. This configuration achieves a direct
imaging of the sample surface on the monitor, thus ensures fine alignments of the
sample, the SIL, the objective, and the pinhole. Also, by removing the pinhole,
one can take PL intensity maps (PL imaging). No scanning is needed here to
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acquire an intensity map with an area of several 100 µm2. When shifting the
mirror out of the optical path, the signal is sent into the spectrometer with a
spectral resolution of 30 µeV and finally recorded by a cooled CCD camera.

This combination of imaging and spectroscopy is very useful for samples with
local structural features like extended defects or single embedded nanostructures.
The first example shown here is the characterization of bright-spot defects indu-
ced by stacking–fault pairs in ZnSe-based quantum wells [10]. The PL landscape
(Fig. 2a) displays pairs of bright spots well aligned either in [110] or [1̄10] di-
rection, respectively. Statistical analysis of the spot separation within each pair
gives a fixed distance for the [110] pairs, while a distribution of separations with
a standard deviation of 30% is found for the other orientation. The separation
within the [110] pairs directly scales with the overall thickness of the epitaxial
structure roughly like

√
2×thickness. The enhancement of the emission in the

region of the bright-spot defects with respect to the background PL is found to
be up to 20%.

Additional structural investigation by atomic-force microscopy and trans-
mission electron microscopy (plain-view as well as cross-section) reveal that a
widening and bending of quantum wells occurs during growth, when they are
intersected by Frank-type stacking faults. These stacking faults originate at the
interface between the GaAs substrate and the (Zn,Mg)Se barrier layer. The areal
defects come in pairs oriented along [110] with an increasing spatial separation
within the pair as a function of the thickness of the epitaxial layer. The enlar-
gement of the well width by up to 12 bilayers evokes an efficient localization of
excitons. The localizing potential related to Shockley-type stacking fault pairs
aligned in [1̄10] direction is found to be much shallower.

The results of the exciton localization can be investigated in more detail by
local µ-PL spectroscopy (Fig. 2b). Here, the pinhole in the image plane is placed
such as to detect the local signal from the different positions on the sample (see
circles in Fig. 2a). The localization of the excitons occurs in areas of the quantum
well enlarged in consecutive steps of one bilayer each. This is obvious from the
peaked PL emission of the Frank-type defects in comparison to calculations of
the expected exciton energy (see vertical lines in Fig. 2b).

These investigations revealed that stacking faults - in contrast to a common
prejudice - do not lead to non-radiative centers but can even enhance the PL
intensity due to localization. However, further PL imaging at different wave-
length using a low-temperature SNOM showed that the line defects bounding
the stacking faults are sources for non-radiative recombination. For more details
of these studies see [5,10].

The second example in this section is related to local type-I centers in type-II
GaAs/AlAs multiple quantum wells. Depending on the thickness of the GaAs
wells these samples are of a type-I or a type-II band alignment (see e.g. [12]).
In wide quantum wells one finds the lowest electron states within the GaAs
layers and related to the conduction band minimum at the Γ point. Due to
the increasing confinement energy the alignment changes to type-II for narrow
quantum wells. Now, the lowest electron states are within the AlAs layers and
related to the conduction-band minimum at the X point. Since the electrons
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are at high momentum and separated from the holes, which are situated in the
GaAs layers, it is obvious that the oscillator strength of excitons in the type-II
structures is much smaller as compared to those in the type-I quantum wells.

In type-II GaAs/AlAs samples with a quantum well thickness close to the
transition of the band alignment one finds local areas with type-I character. In
the µ-PL image these areas show up as bright spots (see Fig. 3a). Looking at
the luminescence spectra from this sample one sees a splitting of the PL band
using a macroscopic spot (Fig. 3b) into an ensemble of sharp lines (Fig. 3c) when
chosing a bright spot with the pinhole (small circle in Fig. 3a). Due to the high
spectral resolution of the setup of 30 µeV one can now address a large number
of individual lines related to excitons in local type-I areas for high-resolution
spectroscopy. It was e.g. possible from temperature dependent studies of the
line positions to determine the shift of the band gap in GaAs due to electron-
phonon coupling with an ultra-high precision of 5 µeV [11].

4 SIL-Enhanced Nano-Photoluminescence

4.1 Implementation of a SIL

Solid immersion lenses come in the form of h-SILs (hemispheres) and s-SILs
(superspheres) as illustrated in Fig. 4. During the last decade, SILs have been
used in solid-immersion microscopes [13] and (magneto-)optical data storage [14]
for high spatial resolution or high storage density, respectively. Recently, SILs
have also been introduced in spatially resolved pump-probe experiments [15,16]
and photoluminescence experiments [9,17,18] on semiconductors. By including a
superspherical SIL [19] in a microscope system, an improved spatial resolution at
room temperature [17] as well as at low temperatures [18] has been demonstrated
by PL-imaging measurements of GaAs quantum wells (QW). The high spatial
resolution has allowed to study carrier migration under global [18] or local [20]
excitation conditions. Besides, an s-SIL has also been used in a spatially resolved
PL setup to investigate exciton localization in GaAs QW [21,22].

Up to now, mostly s-SILs have been applied in PL systems. But, the thickness
of an s-SIL is designed for one particular wavelength since the incident parallel
beam to the objective is focused at the distance r(1+1/nSIL) away from the top

Fig. 4. Sketch of the implementation of SILs and the resulting spatial resolution



Nano-Photoluminescence 57

of the s-SIL, where r is the radius of the SIL and nSIL is the refractive index of
the SIL material. Consequently, the focus of an s-SIL is wavelength-dependent
since nSIL depends on the wavelength of light, λ. In contrast, a hemispherical
SIL (h-SIL) is universal for any wavelength. In a PL experiment, one typically
deals with different wavelengths for excitation and detection. Thus, although an
s-SIL can improve the resolution n2

SIL times while an h-SIL can only improve it
nSIL times, the latter is more appropriate for PL studies.

Our nano-PL set-up (see Fig. 1b) uses an h-SIL made of ZrO2 with nSIL =
2.16 at λ = 600 nm which is adhesively fixed to the sample surface. The sample
with the SIL is vertically mounted inside a helium-flow cryostat. The SIL can
be used in the temperature range of 6–300 K for an unlimited number of cooling
cycles. The diameter of the SIL is chosen to be 1 mm, which is large enough for
giving a sufficently large working area for spectroscopy and for being handled
without any special equipment, but is still small enough to be stuck on the
sample adhesively even in a vertical configuration.

The excitation source for the nano-PL experiments can be a continuous wave
(cw) or a pulsed laser. The laser beam is expanded to fit the diameter of the
objective, then reflected by a beam-splitter and focused onto the sample surface
through the microscope objective as seen in Fig. 1b. The same objective is used
for collecting the PL from the sample. The signal passes the beam-splitter and
is focused by the tube lens onto the image plane of the microscope. The detec-
tion scheme is similar as in Sect. 3. The pinhole installed in the image plane
allows to separately move the detection and excitation spots. Besides cw mea-
surements, where the PL is recorded by a cooled CCD camera, we can perform
time-resolved measurements using a streak camera with a temporal resolution
of 2 ps in combination with a CCD camera in photon-counting mode.

4.2 Spatial Resolution of the SIL-Enhanced Nano-PL

The spatial resolution of an optical system was defined in Sect. 2. Without SIL,
n ≈ 1 (air) and with the h-SIL we have n = nSIL = 2.16. Thus, by introducing
the h-SIL, we can improve the resolution by more than two times in diameter,
thus four times in spot area. In order to confirm the achieved resolution, we
install the SIL onto a sample with a flat surface and focus the incident laser
beam of a He–Ne laser onto the sample surface (i)underneath or (ii)outside the
SIL, respectively. We measure two-dimensional intensity maps of the laser spots
in both cases, as shown in Fig. 5a with the same gray scale encoding. The
length-scale calibration in these maps is obtained by imaging an optical grating
with known parameters. The spatial intensity profiles in Fig. 5b are obtained
by taking a line-scan across the laser spots. As expected, the profile with SIL
(i) is about two times narrower than that obtained without SIL (ii). In (i) the
realized spatial resolution (HWHM of the laser spot) is 0.4 λ [corresponding to
260 nm for the He–Ne laser (633 nm)] in contrast to 0.8 λ for (ii). We note that
the achieved values of HWHM in both cases are larger than that calculated from
(1). This is consistent with theoretical estimations [23], and can be attributed
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Fig. 5. Intensity maps (a) and cross-sections (b) of the focused laser spot onto an
arbitrary sample. The width of the spot obtained with SIL (i) is nSIL times narrower
than that without SIL (ii) [9]

to the Gaussian profile of the laser beam used in the experiment rather than a
plane wave [24], and the high NA of the system [23].

In a confocal microscope system, the resolution can be further improved by
introducing a pinhole with a suitable size to the image plane of the microscope
[24]. In the following, we present a quantitative analysis of this further impro-
vement. The illumination function of the laser excitation can be described by a
Gaussian function,

iill(q) = exp
(

−2
q2

w2
laser

)
. (2)

Here, q is the coordinate inside the focal plane, i.e. on the sample surface, and
wlaser is the spot radius at 1/e2. The detection function idet can also be described
by a Gaussian function, but with a different radius wlumi since generally the
wavelength of the luminescence is different from that of the excitation laser in a
PL experiment. The transmission function of the pinhole is

tp(q) = rect
(
q

q0

)
=
{

1 |q| < q0
0 |q| > q0

(3)

with q0 being the radius of the pinhole image. Thus, the detection probability,
i.e. the probability of a photon emitted at point p to be transmitted through the
pinhole, thus to be detected, is given by

c(q) = tp(q) ∗ idet(q)

=
∫ q0

0
q′dq′

∫ 2π

0
dΦ′ exp

(
−2

q2 − 2qq′ cosΦ′ + q′2

w2
det

)
. (4)
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Fig. 6. Calculated HWHM of the confocal acceptance function (CAF) as function of the
pinhole diameter. The horizontal line represents the HWHM obtained with an infinite
large pinhole. In the calculation, the excitation and detection wavelengths are 476.5 nm
and 529 nm, respectively, which are consistent with the experimental conditions [9]

The confocal acceptance function (CAF) is then given by

pconf(q) = iill(q) · c(q). (5)

Based on the above analysis, we calculate pconf of our SIL-enhanced nano-PL
system. Figure 6 shows the calculated HWHM of the CAF, which defines the
confocal resolution, as a function of the pinhole size. The horizontal line repre-
sents the resolution obtained without pinhole. We find that a pinhole of 60 µm
has no effect on the resolution, but decreasing the pinhole size from that va-
lue the resolution is enhanced. Below 10 µm, the enhancement saturates when
further decreasing the pinhole size.

In order to confirm that the enhancement of resolution by the SIL and pin-
hole can be achieved in a realistic PL measurement, we measure the spectra from
a ZnCdSe/ZnSe quantum-dot sample with different SIL-pinhole configurations.
In this sample, a ZnCdSe layer with a thickness of 2.9 monolayers is embedded
between two ZnSe barriers, including Cd-rich quantum dots with an average size
of about 10 nm. Excitonic transitions in individual dots lead to sharp lines obser-
ved in the PL spectrum. The variations in size, shape and composition of these
dots result in a wide spectral distribution of the lines. Hence, in a macroscopic
PL spectrum (not shown here) one observes a broad smooth emission band due
to the large number of contributing dots. When decreasing the detection area,
hence the number of the dots, individual sharp lines can be resolved on top of
the unresolved smooth background. The resolved part becomes more and more
pronounced with decreasing detection area. This kind of sample with a rather
large dot density can be used to prove qualitatively the enhancement of the
spatial resolution by introducing the SIL.
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Fig. 7. PL spectra of a ZnCdSe/ZnSe quantum-dot sample measured with different
configurations. A: without SIL and pinhole; B: with SIL but without pinhole; C: with
SIL and 20 µm pinhole; D: with SIL and 10 µm pinhole. The low-energy side of curve
C is also shown in Fig. 12b for a closer look on the sharp lines [9]

Figure 7 shows four spectra detected at a sample temperature of 6 K with
different SIL-pinhole configurations, i.e. without SIL and pinhole (A), with SIL
but without pinhole (B), with SIL and a pinhole of 20 µm diameter (C), with
SIL and a pinhole of 10 µm diameter, respectively. The sample is excited by
the 476.5 nm line of an Ar-ion laser. All spectra are composed of a resolved
and an unresolved part, but the resolved sharp lines in the spectrum are more
pronounced as we go from (A) to (D). We fit the background by a Gaussian
function in order to separate the resolved and the unresolved part. The choice
of a Gaussian is legitimate because of the inhomogeneous distribution of a large
number of quantum dots contributing to the spectra. For each spectrum, we
calculate the ratio, R, of the spectrally integrated intensities of the resolved
part to the unresolved smooth background. This ratio increases when enhancing
the resolution of the system, as we discussed above. From Fig. 4 we obtain an
increase of R by 30 % by introducing the SIL [compare 0.109 for (A) to 0.143
for (B)]. By introducing a 20 µm pinhole, R is further increased by 20 % [0.171
for (C)]. In case D, a 10 µm pinhole is used instead of the 20 µm one. But we
don’t find a further increase of R [0.170 for (D)]. This is consistent with our
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analysis discussed above. As shown in Fig. 6, the enhancement of the resolution
introduced by changing a 20 µm pinhole to a 10 µm one is much smaller than
that from no pinhole to a 20 µm pinhole (vertical lines). In practice, the signal
level drops significantly when decreasing the pinhole size from 20 µm, and the
alignment becomes more difficult. Thus, a pinhole size of 20 µm is the optimal
choice in our system. With this configuration, individual sharp lines can be
resolved even for this kind of sample with a rather high dot density. [See the
low-energy side of curve C in Fig. 7, Fig. 12b for a closer look-up, and discussions
below.]

4.3 Collection Efficiency

In a PL experiment, only part of the luminescence from the sample can be collec-
ted due to the reflection losses and the finite size of the optics. The collection
efficiency of a spectroscopy system is of crucial importance, especially in the
cases of low-excitation conditions or low signal level. Generally, the SNOM ex-
periments with high spatial resolution yield rather low collection efficiency. By
using an uncoated tip, the collection efficiency can be significantly improved, but
simultaneously the spatial resolution is limited to about 200 nm [5]. In contrast,
the µ-PL is operated in the far-field regime, thus has a high collection efficiency.
By introducing a SIL into a µ-PL system, the collection efficiency can be further
improved [25–28]. By comparing the luminescence intensities measured with SIL
and without SIL, we find an enhancement of the collection efficiency by about
a factor of five. Small variations of typically less than 20 % with respect to this
factor depend mainly on the cleaning process of both the sample and the SIL.

Here, we present a quantitative analysis on the enhancement of the collection
efficiency introduced by using the SIL [9]. Since the nSIL is smaller than the
refraction index of the sample, nsamp, but larger than that of air, the SIL has the
property to reduce the reflection losses, i.e. to enhance the transmission of both
the luminescence and the laser. The enhancement of the collection efficiency by
this factor, kT, can be calculated by using the Fresnel formula. Figure 8a shows
the configurations for our calculation of kT by comparing the transmissions when
the SIL is used (i) or not (ii). In case (i), since the light enters perpendicularly
through the top of the SIL, the transmission coefficient from air to the SIL is
given by 4nSIL/(1 + nSIL)2 for all rays.

However, when entering the sample, the transmission coefficient depends on
the angle of incidence and the polarization of the ray. This angle dependence is
weak in the range of angles given by the microscope objective. Thus, for average,
we calculate for each polarization the transmission of a ray with an angle to the
optical axis of θ/2. Furthermore, the transmissions of s and p polarizations are
averaged to get the total transmission. Considering the reflection losses of both
the laser and the luminescence, we obtain an enhancement factor kT = 1.2.

But a more important effect than this transmission enhancement is, that the
SIL enlarges the collection angle of the µ-PL system, as shown in Fig. 8b. The
solid angle outside of the sample is independent of whether the SIL is used (i) or
not (ii) and is directly given by NAobj. However, the solid angle inside the sample
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Fig. 8. Schematic drawing of the SIL-sample configuration. The enhancement of collec-
tion efficiency is explained by higher transmission (a) and larger collection angle in the
sample (b) [9]

increases when the SIL is introduced. This is due to the smaller refraction of the
light at the sample surface since the material on top of the sample has now a
refractive index higher than that of air. As a result, a point source emitting light
in all directions as shown in Fig. 8b experiences a larger solid angle in which
the emitted photons can be collected by the objective. A ray emitted outside of
this angle will miss the objective and will not contribute to the signal, even if
its angle to the optical axis is smaller than the critical angle of total internal
reflection. In the approximation that the photons are emitted from the point
source homogeneously in all directions, the enhancement of collection efficiency
due to the larger PL collection angle, kΩ, is given by the ratio of the solid angles:

kΩ =
ΩSIL

Ωair
≈

1 − cos
(

nSIL
nsamp

sin θ
)

1 − cos
(

1
nsamp

sin θ
)

≈
1 −

(
1 − 1

2

(
nSIL

nsamp

)2
sin2 θ

)

1 −
(

1 − 1
2

(
1

nsamp

)2
sin2 θ

) = n2
SIL . (6)

Thus, the total enhancement of the collection efficiency by SIL is simply

ktotal = kT · kΩ ≈ kT · n2
SIL . (7)

In our set-up, we have kT = 1.2, kΩ = 4.8 so ktotal = 5.76. This calculated
value is consistent with out experimental results.
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4.4 Influence of an Air Gap

In the analysis of the previous section, we assumed that the SIL is ideally atta-
ched to the sample surface. In a realistic experiment, an air gap exists between
the flat surface of the SIL and the sample surface due to the fluctuations of both
surfaces as well as due to particles between them. In this section, we discuss
the influence of such an air gap on the resolution and collection efficiency of the
SIL-enhanced nano-PL system.

As discussed above, the NAeff of a SIL-enhanced nano-PL system is deter-
mined by the NAobj and nSIL, i.e. NAobj · nSIL for an h-SIL and NAobj · n2

SIL
for an s-SIL. The influence of the air gap on the resolution depends strongly on
whether NAeff > 1 or not. In a system with NAeff > 1, a description within
the near-field regime is required. This situation applies for the evanescent cou-
pling schemes developed for technical applications [29]. Theoretical analysis has
shown that even an air gap with a thickness of one fifth of the wavelength can
deteriorate the resolution seriously [30]. In contrast, a system with NAeff < 1 is
still in the far-field regime, and it has been shown theoretically that an air gap
of several micrometers does not influence the resolution [31]. In our set-up, we
have NAeff = 0.87 < 1 and thus far-field coupling. To check the influence of an
air gap on the resolution of our system, we attach the SIL to the sample with
and without cleaning procedure, respectively. In the latter case, an air gap of
several micrometers is anticipated (we will prove this fact later). We focus the
laser beam onto the sample surface, and in both cases we get the same size of
the laser spots. Thus, we confirm that in a system with NAeff < 1, an air gap of
several micrometers has no influence on the resolution.

Generally, an air gap introduces additional reflection losses between the sam-
ple and the SIL, thus reducing the collection efficiency. In the near-field regime
with NAeff > 1, the collection efficiency can be deteriorated seriously by an air
gap of several hundred nanometers, i.e. comparable to the light wavelength [31].
In contrast, a system with NAeff < 1 is anticipated to be more robust due to the
far-field conditions. In order to investigate the tolerance of our system to the air
gap, we attach the SIL onto a ZnCdSe/ZnSe quantum-dot sample without any
cleaning procedure. By comparing the spectra measured beneath or outside the
SIL at a sample temperature of 6 K, we find an enhancement of the collection
efficiency by a factor of 2.

To explain the observed enhancement, we calculate the collection efficiency
of the system with an air gap. Figure 9 shows the configuration of the objective,
the SIL, the air gap, and the sample. In the measurement we focus the laser
beam onto the sample surface. The ray-path is shown as a solid line in Fig. 9.
The dotted lines show the situation when the laser beam is focused onto the
flat surface of the SIL. Using the monitor CCD (Fig. 1) we can clearly observe
the images of both surfaces, thus accurately measure the difference between
the two focal lengths, d. In this experiment, we have d = 40 µm. By some
simple geometrical considerations, we deduce the thickness of the air gap to
be 5 µm from the measured d. Based on Fig. 9, we calculate the collection
efficiency of this configuration by the method discussed in the previous section.
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Fig. 9. Left: Schematic drawing of the objective-SIL-sample configuration when the
laser beam is focused onto the sample surface (solid line) and the flat surface of the
SIL (dotted line); Right: Details close to the sample surface. The angle θ is defined by
the NA of the objective [9]

We obtain kT = 0.55 and kΩ = 4.27 so that ktotal = 2.36. The calculation is well
consistent with the experiment. We note that the deterioration of enhancement
from 5.76 to 2.36 by the 5 µm air gap originates mainly from the increase of
the reflection losses (kT drops from 1.2 to 0.55). The enhancement due to the
enlarged collection angle, kΩ, is not sensitive to the presence of the air gap.

In summary, we prove the tolerance of the SIL-enhanced nano-PL system to
an air gap of several micrometers. In a typical measurement, an air gap of about
1 µm exists between the SIL and the sample surface after a regular cleaning
procedure. The enhancement factor of the collection efficiency is then about 5 in
our experiments, as mentioned above. In principle, by increasing the NAobj or
nSIL, or using an s-SIL, one can further improve the resolution of a SIL-enhanced
nano-PL system. But, if the NAeff is increased beyond 1, the near-field regime
is reached, and the tolerance to the air gap drops seriously. In this sense, our
choice of NAeff = 0.864 is a good compromise between the enhancement of
spatial resolution and collection efficiency as well as the feasibility in practical
operations. Still, it is worth noting that the described configuration can be used
even for samples with rough surfaces with fluctuations of several micrometers.

4.5 Application of Nano-PL: Single-Dot Spectroscopy

The investigation of the properties of individual quantum dots requires single-
dot spectroscopy. This can be achieved by reducing the number of dots (selected
e.g. by a nano-aperture or a mesa) or high spatial resolution (e.g. SNOM). In
SIL-enhanced nano-PL, single dot spectroscopy can also be achieved for samples
with a low dot density. In such a system, the choice of dots is more flexible.
One can address a large number of individual dots and thus judge whether the
observed single-dot properties are typical for the whole ensemble. Since there is
no patterning required, it is a non-destructive method.

The high spatial and spectral resolutions of the SIL-enhanced nano-PL sy-
stem enable us to detect isolated narrow lines from single quantum dots undistur-
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Fig. 10. Single dot spectroscopy achieved by a SIL-enhanced nano-PL set-up. (a)Low-
energy side of the spectrum of the ZnCdSe/ZnSe quantum-dot sample in Fig. 7C. (b)
Details of an individual sharp line of a ZnCdSe/ZnSe quantum-dot sample measured
at a sample temperature of 60 K. The shaded area shows a Lorentzian fit to the central
part of the peak

bed by the luminescence from other dots. The high collection efficiency makes
it an ideal system for weak-signal detection. For example, under low-density
excitation the spectrum of sharp lines can still be measured with a reasonable
integration time at high temperatures up to 120 K. In Fig. 3c we have shown
the spectrum of the type-I centers in a type-II GaAs/AlAs [11]. A He–Ne la-
ser is used for excitation with an intensity of 0.5 W/cm2. By introducing the
SIL and the 20 µm pinhole, a large number of isolated sharp lines from indivi-
dual localization centers are well resolved. This allows us to measure accurately
the temperature dependence of the homogeneous line width, thus to study the
exciton–phonon interactions in this kind of structures [32].

With this set-up, isolated sharp lines can also be observed for ZnCdSe/ZnSe
quantum-dot samples with a rather high dot density. In Fig. 10a, we plot a small
part of the spectrum C in Fig. 7 for a closer look at the well-separated lines.
The spectral line shape of the individual lines can be studied with high spectral
resolution. Increasing the sample temperature we observe a strong deviation from
the Lorentzian line shape. Figure 10b shows one example of such a line shape
measured at 60 K. The observed deviation is consistent with previous results
obtained on similar structures, and can be attributed to the strong coupling
regime of excitonic states to acoustic phonons [33]. We note that with this set-
up, we are able to study a rather large number of the lines simultaneously. We
do find that this kind of deviation is a general feature of all measured lines [34].

Furthermore, we confirm that the polarization information of the lumines-
cence, which is of crucial importance, e.g. in the investigations of spin dynamics,
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Fig. 11. SIL-enhanced nano-PL spectra of a single ZnCdTe quantum dot embedded in
a ZnTe matrix as function of the angle of a linear polarizer in the detection path [9]

is preserved in this set-up. Figure 11 shows the spectra of a single quantum island
in a quantum well of 6.5 monolayers ZnCdTe embedded in ZnTe barriers. The
sample is excited with the 488 nm line from an Ar-ion laser. To determine the
polarization of luminescence, a linear polarizer is placed in the detection path.
The spectra show a doublet structure composed of two lines which are linearly
polarized along two orthogonal directions. Such line doublets are ascribed to
fine-structure splitting of excitons in asymmetric quantum dots [35]. It is typi-
cally very difficult to extract the polarization information from other spatially
resolving techniques like near-field spectroscopy [36]. Our measurement demon-
strates that a SIL can be applied to nano-PL when the polarization of the light
is of interest.

4.6 Application of Nano-PL: Spatio-temporal Dynamics of Excitons
in Quantum Wells

Lateral transport of excitons is an important aspect of exciton dynamics in quan-
tum wells (QWs). Due to the continuing miniaturization of electronic and optical
devices and thus the increasing importance of nanostructures, this transport has
to be understood on a length scale comparable to the optical wavelength. It turns
out that excitonic transport on such a length scale is far from the classical beha-
vior [37–42]. The SIL-enhanced nano-PL can be used to investigate the transport
behavior in a rather direct way with sub-µm resolution. By scanning the pinhole
in the image plane of the objective, one can detect luminescence from positions
which are different from the position where the sample is locally excited. This
enables one e.g. to get the spatial profile of the luminescence intensity which is
related to the spatial distributions of the exciton density. The field of view of
the SIL [31] (35 µm in our set-up) is far beyond the typical transport length of
excitons.
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Fig. 12. (a) A PL spectrum of a ZnSe QW measured at 7 K; (b) Spatial profiles of the
ZPL intensity (squares), of the laser spot (triangles), and of the HL peak (circles); (c)
FWHM of the spatial distribution of ZPL intensity as function of the excitation excess
energy in cw experiments; (d) Temporal evolution of the squared FWHM of the ZPL
spatial distribution measured under pulsed excitation (squares), simulated by a Monte
Carlo method (solid line) and the simulated expansion of the total exciton population
including hot excitons (dashed line) [41]

We summarize in Fig. 12 some of the most important results found for the
transport of hot excitons in ZnSe QWs. These excitons can be generated via
the ultra-fast emission of LO phonons with well defined excess kinetic energy.
This generation is followed by an energy relaxation due to emission of acoustic
phonons which continues over several hundred picoseconds. The relaxed excitons
couple to photons directly, resulting in a zero-phonon line (ZPL) in the PL
spectrum, as shown in Fig. 12a. In cw experiments, we fix the excitation laser
spot and scan the detection spot with respect to the former spot to measure the
spatial distribution of the ZPL intensity. An example of the measured profiles is
shown in Fig. 12b by the squares. The profile of the laser spot is given in the same
panel by the triangles for comparison. By Gaussian fits (solid lines in Fig. 12b),
we obtain the full width at half maximum (FWHM) of the distribution, which
reflects the transport length of the excitons. The measured FWHM is plotted
in Fig. 12c as a function of excitation excess energy. We find a pronounced
periodic quenching of the transport length with a period equal to the LO-phonon
energy. This effect is similar to the LO-phonon cascade typically observed in
PL excitation spectra. These cascades result from the fact that the excitonic
formation and relaxation processes assisted by LO phonons are much faster than
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the acoustic-phonon scattering. The periodic feature reveals the importance of
the exciton kinetic energy in the transport process and is not concurrent with a
diffusive transport [38].

Time-resolved measurements provide additional insight into the dynamics of
these processes. In this kind of experiments, a laser pulse is used to generate
excitons locally. In contrast to non-linear optical experiments with high spatial
resolution, these studies can be performed in the low excitation regime where
many-body interactions are negligible. The time-resolved spectra of the ZPL are
measured at different positions with respect to the excitation spot. From these
spectra, we get the temporal evolution of the spatial distribution of the ZPL
intensity. The squares in Fig. 12d show the squared FWHM of this distribution
as a function of time. Anticipating exciton diffusion, one expects a linear increase
of the squared FWHM. The observed sub-linear expansion shows again that the
diffusion model is not valid for the description of the exciton transport [40].

In order to model the exciton dynamics, we apply a Monte Carlo simula-
tion. The processes considered in the simulation include laser excitation, exciton
formation, relaxation, transport and recombination. These processes are control-
led by acoustic-phonon and interface-roughness scattering. Using the correlation
length of the interface roughness as the only fitting parameter, the simulation
(solid curve in Fig. 12d) reproduces the experimental result perfectly.

These simulations also confirm that the spatial profile of the ZPL does not
directly reflect the spatial distribution of the excitons [40]. Since the photon
momentum is negligible, only cold excitons with small momentum can couple
to a photon. Thus, the ZPL only monitors the presence of cold excitons while
hot excitons are not visible. A large portion of the exciton ensemble, however,
populates high-momentum (i.e. dark) states. While energy relaxation continues,
the spatial distribution of the total exciton density including hot excitons can be
significantly different from the measured ZPL intensity distribution. The tem-
poral evolution of the total exciton density obtained in our simulation is shown
by the dashed line in Fig. 12d. The difference is clearly visible up to 400 ps.
In Fig. 12d we also see a striking peak around 30 ps, indicating a breathing-
like transport of hot excitons. The excitons start with a quasi-ballistic motion
away from their excitation sides. Due to the fact, that acoustic-phonon emission
most likely results in a backward scattering, the first emission reverses the exci-
ton motion towards the spot center. After several scattering events the density
distribution expands in a nearly diffusive fashion.

Such a spatial oscillation of the exciton distribution can be monitored directly
by the ZPL when the excitation is quasi-resonant. From these oscillations one can
simultaneously deduce the coherence length and time of the exciton transport
[42]. Finally, analysis of the phonon-side band emission (PSB in Fig. 12a) with
cw or time-resolved nano-PL yields the dynamics of the energy relaxation during
the excitonic transport [39]. The spatial dependence ot the intensity of the hot
exciton PL line (HL in Fig. 12a) is a direct measure of the exciton coherence
length [37].
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10. D. Lüerßen, R. Bleher, H. Richter, Th. Schimmel, H. Kalt, A. Rosenauer, D. Li-
tvinov, A. Kamilli, D. Gerthsen, K. Ohkawa, B. Jobst, D. Hommel: Appl. Phys.
Lett. 75, 3944 (1999)
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Spectral Trimming of Photonic Crystals
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Abstract. We present a novel concept to trim the transmission properties of finite two
dimensional photonic crystal slab waveguide structures by UV photobleaching. Syste-
matic fabrication inaccuracies may be compensated due to the shift of the spectral
properties during the bleaching process. To prove our concept experimentally, we mea-
sured the transmission of UV sensitive photonic crystal structures for different doses.
A shift of band edges and defect resonance peaks depending on UV dose is observed
due to changes in refractive index and geometry.

1 Introduction

Photonic crystals (PCs) are a current research topic in applied physics since they
offer a significant potential in the area of ultracompact integrated optics devices.
PCs apply the concept of using periodic dielectric functions in space in more than
one dimension and were introduced by Yablonovitch [1] and John [2]. Dielectric
periodicities lead to bandstructures of the same dimensionality, comparable to
the opening of band gaps for electrons due to periodic atomic potentials. In both
cases the wave functions are represented by Bloch functions with wavelengths on
the scale of the periodicity. If the dielectric lattice geometry is chosen appropria-
tely, a frequency range opens in the bandstructure blocking light of respective
wavelengths [3,4]. This range is called photonic band gap (PBG) and is one of
the most important characteristics of PCs because it allows to manipulate the
propagation of light within a few lattice constants, on a much smaller scale than
conventional gratings. The higher the dielectric contrast, the wider the PBGs.
By doping PCs with isolated defects it is possible to create allowed states in-
side the PBG, resulting in high-Q cavities [5–7]. Also sharp bends [8–10] using
connected defects in PC waveguide structures, and superprisms [11–13] based
on the highly anisotropic dispersion surface of a PC can be realized.

For integrated optics finite two dimensional (2d) PCs play a key role because
planar slab structures may fairly easily be structured using current fabrication
methods. The in-plane propagation of light is governed by its interaction with a
2d lattice of air holes etched through the slab. Vertical confinement is facilitated
by total internal reflection. Slab waveguide cores thus are required to have a
higher refractive index than substrate and cladding, which is an important issue
also discussed in this article. Defects resulting in allowed states inside the band
gap are for example realized by leaving out air holes in the otherwise regular
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PC. For stability reasons and ease of fabrication planar PCs should have non-air
substrates and hence are in most cases vertically asymmetric. Choosing an air
hole lattice the functionality of the PC is limited to one polarization, nevertheless
showing an in-plane, direction independent stop gap for triangular lattices [14–
17].

Most 2d PCs realized today are based on a semiconductor core material
(GaAs, InP or Si) in order to achieve a high horizontal refractive index contrast
and thus a wide bandgap [18]. Waveguide cores for single mode operation are
around 0.25µm thick, resulting in a strong coupling mismatch between standard
optical single mode fibers and 2d slab PCs. Another approach is using materials
with moderate refractive indices in the range of n=1.54 to n=2.30, increasing
waveguide core thicknesses to typically between 0.5µm and 1.5µm, in this way
reducing mode mismatch and Fresnel reflection on coupling interfaces. Polymers
and inorganic glasses have indices in this region and show low intrinsic slab
waveguide losses [19–22]. For reasons of longer material wavelengths statistical
fabrication errors in the PC lattice are less critical in moderate refractive index
materials than in high index ones. Using chromophores in the material matrix,
one may also to some extent alter the refractive index in irreversible and rever-
sible ways, directly shifting the spectral properties of a PC device.

In the first part of this chapter we study the influence of the air hole etching
depths on overall transmission characteristics of planar 2d PC. Etching air holes
into the core material reduces the effective refractive index at the same time,
decreasing the vertical contrast required for guiding by total internal reflection.
It is shown that waveguiding conditions may be improved by etching into the
material substrate to sufficient depths. Finite difference time domain (FDTD)
simulations and experimental data prove that the optical transmission properties
of a moderate refractive index PC are indeed dramatically enhanced by air holes
reaching sufficiently far into the substrate [23,24].

PCs are very sensitive to deviations from the ideal design, especially in lattice
constant and air hole radius. Section 3 introduces a novel concept of photoble-
aching chromophores in PCs to compensate systematic fabrication errors and
furthermore shift optical properties to desired wavelengths used in dense wave-
length division multiplexing (DWDM). By photobleaching one can irreversibly
adjust the refractive index of the polymeric waveguide core, and consequently
trim the spectral transmission properties of the PC. The concept is proved both
in FDTD simulations and experimental measurements. Section 5 concludes this
contribution.

2 Importance of Etching Depths in 2D Planar PCs

The slab waveguide considered in this section consists of a 1.5µm thick polymer
slab waveguide core with a refractive index of n = 1.54 @ 1.3µm on a Teflon
substrate with n = 1.30 @ 1.3µm. To scale the PC stop gaps to near infrared
wavelengths, a lattice constant a of 500nm and a hole radius r of 150nm are
chosen. The three innermost lines of air holes are omitted, forming a 2d PC
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Fig. 1. Simulations of the electric field distribution inside a finite 7 3 7 2d PC line
defect resonator (TE-polarization). nCORE = 1.54, nSUBSTRATE = 1.30, r = 150 nm,
a = 500 nm, dSLAB = 1.5 µm. Left: Holes not etched into the substrate (dETCH =
0.0 µm). Substantial radiation losses to the substrate are observed. Right: Sufficient
etching depth (dETCH = 2.0 µm), reaching nearly optimal confinement and transmis-
sion. Bottom: Transmission spectra of both resonator structures as function of vacuum
wavelength (A: air band edge, D: Dielectric band edge) in TE polarization

line defect resonator, introducing a defect state inside the stop gap. The PC
consists of a square lattice of air holes with a total length of 16 lattice constants,
equivalent to 8µm only. The notation n m n used in this article refers to a re-
sonator which consists of a defect of width m · a embedded in a hole lattice of
width n · a from both sides. Figure 1 gives side views of the simulated PCs,
Fig. 2 shows a scanning electron micrograph (SEM) picture. A square lattice
of air holes in theory does not show a direction independent stop gap. The 2d
line defect resonator, however, is just driven in one direction, perpendicular to
the geometric line defect. Furthermore, stop gaps appear for both TE and TM
polarization. Such resonator structures may be used as optical filters because
of a narrow transmission bandwidth at the resonance wavelength, reaching high
quality factors within very compact devices.

2.1 Simulation of Varied Etching Depths

To analyze the influence of etching depths we performed three dimensional (3d)
finite integration simulations (an FDTD scheme as implemented in CST Micro-
wave Studio, [25]). The structure is excited with the fundamental slab waveguide
mode from the left and the transmitted signal is recorded at the right output
port (Fig. 1).

The resonance peak observed inside the stop gap is directly related to the de-
fect geometry of the 2d PC lattice. The transmission at the resonance wavelength
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Fig. 2. SEM picture displaying the cleaved edge of a 10 3 10 2d PC line defect resonator
made of P(MMA/DR-1)-Teflon. The holes of the square lattice were etched through
the waveguide core layer into the Teflon substrate. This structure is excited from the
left and the transmission is measured on the right side of the 2d PC

is very high for the sufficiently etched system (dETCH = 2.0µm, T = 90.0%)
compared with the slab waveguide where just the core material is perforated by
the air holes (dETCH = 0.0µm, T = 47.1%). Strong radiation losses are clearly
visible for the insufficiently etched 2d PC line defect resonator due to a lack of
total internal reflection at the core/substrate boundary. In the sufficiently etched
resonator, the total internal reflection condition is recovered by decreasing the
average refractive index of the substrate as well. At shorter wavelengths to the
left of the stop gap electrical fields are concentrated inside the air holes, this
part of the spectrum is called the air band edge. It is much more sensitive to
radiation losses compared to the side with longer wavelengths (dielectric band
edge), where the electric field is concentrated in the dielectric material. For the
sufficiently etched 2d PCs radiation losses are minimized, resulting in a high
transmission namely at the air band but to some extent also at the dielectric
band edge.

2.2 Experimental Characterization of PCs
with Different Etching Depths

To investigate the prerequisite of sufficient etching depths we fabricated a square
lattice of air holes in a polymeric slab waveguide [26]. The substrate of the
slab waveguides consists of a low refractive index polymer Teflon AF (DuPont,
refractive index 1.30 @ 1300nm) with a thickness of about 2µm coated on a
3 inch oxidized silicon wafer. As slab waveguide core material we use a side
chain polymethylmethacrylate (PMMA) polymer covalently functionalized with
10 mol % of nonlinear dye molecules Disperse Red 1 (DR-1).

This material has a refractive index of n = 1.54 @ 1300nm and exhibits low
optical losses (1dB/cm@ 1.3µm). In order to achieve single mode operation in
the 2d PC at 1300 nm excitation wavelength a core layer thickness of 1.45µm
is chosen. The 2d PC structure is fabricated by electron beam lithography and
reactive ion etching (RIE) employing a standard electron beam lithography resist
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Fig. 3. Experimental setup to measure the transmission properties of finite 2d PC slab
waveguide structures

and a NiCr - metal mask for the etching process. The processing steps are as
follows: After the hole array is written into the resist and the mask is opened
by ion etching with Argon, the PC structure is transferred into the waveguide
core by reactive ion etching using a electron - cyclotron - resonance (ECR)
plasma source with a mixture of O2 and argon. As a final step, the remaining
metal mask is removed by wet etching. The realized 2d PC structure corresponds
to the simulated 2d PC described above (Fig. 1). Figure 2 shows a scanning
electron micrograph (SEM) image of an example of a finite 10 3 10 2d PC in the
P(MMA/DR-1)-Teflon system with an etching depth of 1.8µm to 2.0µm into
the substrate.

For the optical characterization of our 2D PC waveguides we use an arran-
gement of a white light source (Oriel, 1000 W), a monochromator (1/4 m, Yvon
Jobin), a polarizer, and a waveguide prism coupler setup. The PC structure is
positioned between two prisms to couple light into and out of the waveguide.
The wavelength dependent optimal coupling angle is adjusted by rotating the
incoupling prism and the sample holder for optimum coupling. The optical sig-
nal is detected by a Ge photodiode and recorded by a lock in amplifier. The
experimental setup (Fig. 3) allows mode selective polarization and wavelength
dependent transmission measurements in the near infrared regime.

To investigate the influence of the etching depth on the transmission pro-
perties of the 2d PC we compare the spectra of a deeply etched 7 3 7 resonator
made of P(MMA/DR-1)-Teflon (dETCH = 2.0µm) with the spectra of a shallo-
wly etched 7 3 7 BCB-Teflon (bencocyclobutene polymer [20], dETCH = 0.2µm)
resonator. Both polymers have refractive indices of n = 1.54 in the near infrared
regime hence behave identically as PC waveguide slab materials. Figure 4 shows
the transmission spectra of the two PC resonators.

Again the spectrum of the sufficiently etched 2d PC on the right shows a
much better transmission at the defect wavelength as well as at the air and
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Fig. 4. Transmission of 7 3 7 2d PC line defect resonators for TE0-like and TM0-like
polarizations. Left: 7 3 7 BCB resonator, etching depth 200 nm. Right: P(MMA/DR-1)
resonator, etching depth 2 µm

dielectric band edges. Especially the transmission on the air band side benefits
from the large etching depth compared with the curves in the left diagram.

To conclude this section, we showed both experimentally and theoretically
that finite 2d PC waveguides based on core and cladding dielectrics of comparati-
vely small vertical refractive index contrast show good transmission performance
only for high aspect ratio air holes. To investigate the influence of the etching
depth experimentally, we realized finite 2d PC resonators of different low loss op-
tical polymers. These structures show high transmission at the resonance and at
the air and dielectric band edges only when the holes are deeply etched into the
substrate, significantly reducing radiation losses both on the defect wavelength
and at the air band edge.

3 Trimming of 2D PC Optical Spectra
by UV Photobleaching

For applications in integrated optics and wavelength division multiplexing
(WDM) PC structures like high Q cavities are of great interest for spectral
channel separation in the order of 0.8nm (100GHz).

Fine tuning of working frequencies is also an important issue in quantum op-
tical applications because defect frequencies or band edges have to match atomic
transition energies. Therefore new concepts have to be developed to compensate
for systematic fabrication deviations.

In this section, we present a new concept for trimming spectral transmission
properties of 2d PCs after fabrication. We experimentally and theoretically show
that an irreversible reduction of the refractive index and layer thickness of the
waveguide core is achievable. Chromophores in a polymer slab PC may be UV
bleached, leading to such an irreversible shift in the spectral position of the
defect frequency and the dielectric band edge. Our 2d PC devices are made of
a polymeric waveguide core as described in Sect. 2.2, the polymer is containing
Disperse Red 1 (DR-1, Fig. 5) dye molecules, which strongly absorb UV-photons
due to their ππ∗ transition.



Spectral Trimming of Photonic Crystals 77

Fig. 5. Left: Polymethylmethacrylate (PMMA) covalently functionalized with the Di-
sperse Red 1 (DR-1) chromophore. The dye molecule is attached to the PMMA polymer
backbone. Right: UV photobleaching process of the DR-1 molecule

Fig. 6. Principle of photobleaching a finite 2d PC structure. A spatial refractive index
distribution results with the shape of a step function. Due to the high optical density of
the unbleached material most of the UV photons are absorbed at the surface. Hence, the
step function moves vertically through the slab waveguide with increasing illumination
time i.e. UV dose. dUNBLEACHED represents the thickness of the unbleached waveguide

The UV-deposited energy leads to a decomposition of the chromophore into
two smaller fragments which no longer absorb into the ππ∗ band because of the
destruction of the conjugated π-electron system. This effect lowers the linear
polarizability as well and typically decreases the refractive index in the visible
and near infrared regime by a factor of a few 10−2 [27]. The volatile molecule
fragments may diffuse out of the polymer matrix leading to an effective reduction
of the core film thickness after photobleaching. Figure 6 shows the principle of
photobleaching finite 2d PCs.

3.1 3D Simulations of Bleached 2D PCs

In order to estimate the maximally achievable shift we performed 3d finite inte-
gration simulations of a bulk 2d PC with a length of 19 lattice constants. The
transmission and the spectral position of the first Fabry-Perot (FP) maximum
of the dielectric band edge in TE polarization is calculated for different thickn-



78 M. Schmidt et al.

Fig. 7. Calculated spectral position and transmission of the dielectric band edge (first
FP maximum) as a function of the unbleached slab thickness dUNBLEACHED (see Fig. 6)
corresponding to different bleaching times i.e. UV doses

esses for the unbleached slab, corresponding to various UV doses i.e. bleaching
times (Fig. 7). In this model, we assume a reduction of the refractive index from
n = 1.54 to n = 1.51 which is confirmed by experimental results. A decreased
slab waveguide thickness of the bleaching region of 16% is included [27]. Other
simulation parameters are as in Sect. 2.1.

We observe a shift to shorter wavelengths because a reduced refractive index
and a decreased slab waveguide thickness lead to a lower effective slab waveguide
mode index. From simulations we get a maximum shift of the dielectric band
edge of 36 nm in TE polarization. The transmission decreases for this large shift
by just 8%. When the dielectric band edge is shifted by a wavelength interval
equivalent to 10 DWDM channels (0.8 nm each), the transmission is lowered by
only 5%. A shift of only one DWDM channel is accompanied by hardly any
transmission reduction.

3.2 Experimental Bleaching of Regular 2D PCs

To verify our concept experimentally we fabricated a finite 2d PC slab consis-
ting of PMMA covalently functionalized with 10 mol% DR-1 chromophores as
core and Teflon as substrate materials. The fabrication process was described in
Sect. 2.2. The 2d PC has 20 air holes along and 8000 holes perpendicular to the
direction of propagation (a = 500nm, r = 150nm), resulting in an optical stop
gap at around 1.3µm vacuum wavelength. In order to reduce radiation losses
into the substrate an etching depth of 2.5µm into the substrate was chosen (sec.
2).

For photobleaching the polymeric waveguide core material, a 1 kW Xe high
pressure lamp (Oriel) with a spectral emission from 220nm to the IR regime is
used. To cut off light with wavelengths shorter than 290nm, which would destroy
the PMMA main chain, a Schott WG 295 filter is inserted into the beam. At the
other end of the spectrum, light with wavelengths larger than 700nm is filtered
out by a H2O filter, reducing the heat transferred to the sample. The light is
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Fig. 8. Experimental setup for photobleaching 2d PC structures and measuring the
transmission as a function of wavelength (see Fig. 3)

imaged into a UV fiber (Oriel dCORE = 3mm), guiding the UV photons directly
onto the 2d PC structure mounted between two prism. The light finally emitted
from the fiber has a spectral range of 290nm to 700nm and an integral power
density of approximately I = 440mW/cm2. The combination of this set-up with
the prism coupling set-up described in Sect. 2.2 allows in situ photobleaching of
the 2d PC slab waveguide (Fig. 8). The samples are not measured directly after
the exposure to UV radiation, but rather after 8 hours, to allow the cis-isomers,
which are the result of a different absorption into the chromophores, to convert
back to the thermodynamically stable trans state. Typical exposure times are
10 minutes only. The bleached spot on the sample has a round shape of 5mm
diameter visible to the naked eye by its faded color. Therefore, the complete 2d
PC structure was exposed.

The left image of Fig. 9 shows a cleaved edge of an unbleached bulk 2d PC
(without line defect) consisting of 20 layers of air holes perpendicular to the
direction of propagation.

There was no further shift of the dielectric band edge after 80 minutes of
bleaching, amounting to a total UV dose of 2.1 kJ/cm2.We observe a maximum
shift of the dielectric band edge of approximately 35nm toward shorter wave-
lengths (Fig. 9 right) which is in agreement with our 3d FDTD simulations. In
TM polarization a slightly smaller shift of 27nm was measured. This difference
may be explained by simulations (plane wave calculations, MPB package [28])
where an induced birefringence of nTE = 1.51 and nTM = 1.532 is assumed
at the X-point of the reciprocal square lattice. Chromophores in the waveguide
core oriented parallel to the film surface absorb the UV photons better than per-
pendicular aligned dye molecules due to the mismatch between polarization and
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Fig. 9. Left: SEM picture of a cleaved edge of a 2d PC crystal containing 20 layers
of air holes used for bleaching experiments. Right: Spectral transmission taken at the
dielectric band side of the stop gap, each curve corresponding to a different bleaching
time. The shaded region indicates the total shifting of the dielectric band edge up to
80 minutes of photobleaching

transition dipole moment orientations. Therefore, the refractive index change in
the TM direction is expected to be smaller [29].

The transmission on the dielectric band edge is reduced for very long blea-
ching times thus deposited UV doses. This may be due to two reasons: First, the
reduced transmission of the dielectric band edge may be related to a stronger in-
duced surface roughness, which is a result of chromophore fragments gassing out
of the waveguide core. Second, the SEM picture shows that, due to deficiencies in
our nanostructuring process, the air holes are of a cone shape and interconnected
at the top of the waveguide. Simulations precisely of this structure show a strong
mode mismatch between the fundamental slab waveguide mode and the 2d PC
mode when bleaching the core material. This results in back reflection into the
slab waveguide and strong radiation losses into the substrate. By optimizing
the etching parameters the air holes will have a more cylindrical shape and the
transmission is expected to stay at a high level also for longer bleaching times.
However, to make spectral adjustments on the scale of a few DWDM channels,
only shifts of a few nanometers or even fractions of a nanometer are needed.
This requires only a relatively small UV dose or short bleaching times below one
minute, not affecting transmission substantially [22].

3.3 Experimental Bleaching of 2D PC Line Defect Resonators

We also performed first experiments on trimming PC resonator structures. A
10 3 10 2d PC line defect resonator consisting of P(MMA/DR-1) as core and
Teflon as substrate material is fabricated (dETCH = 2µm). The left diagram of
Fig. 10 shows the spectral transmission of this resonator structure at the re-
sonance wavelength for different UV doses, i.e. different bleaching times in TM
polarization.

For bleaching times up to 60 minutes the defect peak, against physical intui-
tion, moves to longer wavelengths. This can be explained by the following model:
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Fig. 10. Left: Normalized transmission of the 10 3 10 2d PC line defect resonator
around the resonance wavelength for different bleaching times in TM polarization.
Right: Resonance wavelength of the resonator and Q factor of the cavity as function
of bleaching time, i.e. deposited UV dose.

Fig. 11. SEM picture of the 10 3 10 finite 2d PC line defect resonator after a 140
minutes exposure of UV light

In principle, the 2d PC line defect resonator consists of two Bragg mirrors spati-
ally located around the defect. When photobleaching the structure from the top
(Fig. 6), UV photons penetrate into the holes, and light is primarily absorbed at
the top of the material between the holes but also on the side walls. Due to this
penetration the Bragg mirror parts of the 2d PC absorb more UV light than the
defect. As shown by Vydra et al. [27], the volume density of the material does
not change during the bleaching process. This necessarily results in a shrinking
of the Bragg mirrors while photobleaching. Therefore, the defect is expected to
effectively elongate (Fig. 11). A careful examination of the center region in the
SEM picture of the bleached PC waveguide exactly confirms this mechanism.

These larger defect volumes directly cause a shift of the resonance peak to
higher wavelengths as observed in the transmission spectra. For bleaching times
up to 60 minutes, the change in geometry dominates the spectral behavior of
the structure. After 60 minutes of photobleaching, leading to a shift of 22nm
to longer wavelengths, no further change in geometry is observed. For exposures
longer than 60 minutes the reduction of the refractive index from n = 1.54 to
n = 1.532 becomes dominant. The faster geometry change, i.e. the strain of the
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central defect region, mainly stems from the UV conversion and extraction of
molecular fragments from the adjacent perforated regions which are highly ac-
cessible for the UV photons due to their large surface. The refractive index of
the solid center region, on the other hand, reacts more slowly since this unper-
forated part of the PC is less open to the UV photon attacks and provides less
surface for diffusion process. As shown in Sect. 3.2, the refractive index change
leads to a shift to shorter wavelengths related to a reduced effective index of
the slab waveguide mode. Only for very high UV doses, the quality factor of the
cavity (Q-factor) is substantially reduced during the bleaching process (Fig. 10
right). However, the maximum shift to longer wavelengths is 22nm. To address
a few DWDM channels, i.e. to shift the transmission peak a few nanometers,
only a very small UV dose or a bleaching time below one minute is needed.
Therefore, the initial Q-factor is expected to remain unchanged. The Q-factor
mainly depends on the number of lattice constants of the PC regions adjacent
to the defect. Maximizing Q therefore requires larger PC structures and will be
addressed in a different publication. All results presented here can be applied
also to these larger PC structures.

4 Photonic Crystal Waveguides

To use integrated optics components on an all optical chip, concepts have to be
developed to connect the different structures. In today’s applications in optical
circuits, ridge or channel waveguides are widely used whereas different prere-
quisites have to be fulfilled. The mode sizes of the functional units and of the
connecting waveguides have to be matched preferably with low coupling losses
below 1 dB. Typically, this requirement is fulfilled if the waveguide and the
functional unit are of the same order of size. Waveguide transmission losses in
the range of 10 dB/mm are possible today in high refractive index systems [30].
Another important factor to increase the number of components on one chip is
the realization of sharp waveguide bends with high and broadband transmission
connecting the optical elements in two dimensions.

Photonic crystals are one of the most feasible concepts to satisfy the criteria
above mentioned. As mentioned in the beginning of the article, photonic crystal
structures have dimensions in the order of the operation wavelength, hence ful-
filling the requirement of small sizes.

Doping of photonic crystal structures results in allowed states inside the
photonic band gap. This kind of defect is typically realized by leaving out one
complete line in a bulk PC hole array. Excitation of a defect mode along the
direction of the defect results in a propagation waveguide mode which is laterally
confined by Bragg reflection. Vertically, the light is guided through the structure
by total internal reflection.

4.1 Straight Waveguides

Due to the fact that the photonic crystal waveguide mode which results from
the line defect inside the PC contains k vectors (in plane wave base) pointing



Spectral Trimming of Photonic Crystals 83

Fig. 12. SEM - pictures of W9 photonic crystal channel waveguide consisting of Nb2O5

as core material [31]

to all horizontal directions, a complete in-plane band gap for one polarization is
required. Typically, triangular lattices which Bragg reflect light in all directions,
if the incoming light has a frequency inside the photonic band gap, are used
for waveguiding applications. Therefore, it can be shown theoretically that a
refractive index larger than 1.8 is needed to open a complete band gap for the
TE polarization.

Augustin et al. [31] have realized straight photonic crystal waveguides made
of a triangular hole lattice in moderate refractive index Nb2O5 with
n = 2.17 @ 1.5µm. This relatively moderate refractive index opens a complete
band gap for the TE polarization and keeps the Rayleigh scattering losses relati-
vely low. These losses result from the etching process inducing surface roughness
at the side walls of the holes.

Also, the pentoxide material shows very low intrinsic slab waveguide losses
below 1 dB/cm@ 1.3µm operation wavelength. Hole diameters of 370nm and
lattice constants of 595nm result in a photonic band gap around the operation
wavelength of 1.3µm. The thickness of the slab waveguide core which was sur-
rounded by upper and lower SiO2 cladding layers was 500nm. Figure 12 shows
the realized structure where 9 lines inside the photonic crystal have been left
out (W9 - waveguide).

The cut back method was used to determine the photonic crystal waveguide
losses. Therefore, the photonic crystal channel waveguide was successively shor-
tened by cleaving the end of the wafer, resulting in a exponentially increase of the
transmission. The slope of the decay in logarithmic scale is correlated with the
waveguide losses. Augustin et al. measured 1.7 dB/mm@ 1.50µm wavelength for
the W9 and 8.5 dB/mm@ 1.50µm for the W3 waveguide which is in the range
of the prerequisites to use photonic crystals in telecommunications.
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4.2 Photonic Crystal Waveguide Bends

An all optical chip design requires a two dimensional interconnection between
the different optical components. Due to the fact that the size of the components
is in the 10s of micrometer regime, small waveguide bends with relatively low
optical losses are required to reach a high integration density. In today’s telecom-
munication technology, ridge waveguide bends are commonly used with bending
radii of about 10µm which is still large compared to the component dimension.
Modification of the bend may result in an improved transmission [32].

Photonic crystal waveguides consisting of a triangular lattice provide the
possibility of 60 degree bends. This kind of photonic crystal bend is compatible
with the lattice of the photonic crystal. Different bend geometries in various
material systems have been manufactured to evaluate the bending losses [33,34].

In a first order approximation, the bend can be regarded as a cavity. The
modes of this cavity have lossy k - vector components in the vertical direction,
resulting in radiation losses which decrease the bend performance. Therefore,
lattice tuning and impedance matching concepts at the location of the bend are
promising options to keep the vertical losses small. Most of the concepts are based
on the fact that by introducing holes inside the bend, the effective mode volume
decreases. This results in a smaller number of modes in the bend decreasing the
radiation losses because lossy higher order modes have been cancelled out [35].
Boscolo et al. showed that 0.06 dB at a Y- junction are theoretically achievable
in a n = 3.4 material system [10].

Augustin et al. have realized photonic crystal channel waveguides with two
double bends using Nb2O5 as core material which operate in the telecommuni-
cation wavelength regime at 1.50µm (Fig. 13). To couple light into the photonic
crystal structure, ridge waveguides have been connected to the photonic crystal
structure. By referencing the transmission of the double bend to a single pho-
tonic crystal waveguide, a low loss of 1.2 dB/bend was achieved if the bend had
been optimized by adding holes into the bend [36].

Fig. 13. SEM pictures of double 60◦ photonic crystal channel waveguide bends consi-
sting of Nb2O5 as core material. Left: non-modified double bend; right: optimized bend
by additional holes inside the waveguide [36]
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5 Conclusion

In this article, we showed 2d PC structures from moderate refractive index mate-
rials operated in the near infrared. Square lattices of holes with a lattice constant
of 500nm and a radius of 150nm were deeply etched into polymeric slab wave-
guides. High aspect ratios (>10) were shown to restore improving total internal
reflection at the core/substrate interfaces. As a consequence, high transmission
at the air band edge and at resonance wavelengths is theoretically expected and
experimentally observed.

To compensate for systematic fabrication deviations, a novel concept to trim
PC structures by UV photobleaching was introduced. Simulations show a ma-
ximal irreversible shift of the band edges of 35nm in a bulk 2d PC, which was
verified experimentally. In a second step, a finite 2d PC line defect resonator was
photobleached resulting in a maximum shift of 22nm to longer wavelengths for
the first 60 minutes of the UV exposure followed by a reduction of 15nm within
the last 80 minutes. The initial increase can be explained by a strain from the
photosensitive polymer P(MMA-DR-1) in the defect geometry of the resonator.
At longer illumination times, the change in refractive index dominates and the
resonance peak shifts to shorter wavelengths. In order to trim on nanometer sca-
les, corresponding to one or a few DWDM channels, only very small UV doses
or bleaching times below one minute are necessary. We think that this concept
may be applied to level out systematic fabrication inaccuracies in PC structures.
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Single-Electron Devices

Jürgen Weis

Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, 70569 Stuttgart,
Germany

1 Introduction

The electrical charge is quantized in the elementary quantum −e carried by single
electrons. In mesoscopic systems at sufficiently low temperature, this discrete ele-
mentary charge can give rise to peculiar electrostatic effects. With achieving the
ability of making small devices on the scale of less than few hundred nanometers,
devices based on single-electron charging effects have been proposed and realized
in the last 15 years.

After a brief introduction to the concepts of Coulomb blockade and single-
electron charging, some device concepts for applications are presented, but also
arrangements for studying basic physics of electrical transport relevant for mole-
cular electronics are discussed. The presented picture for electrical transport
through conducting mesoscopic particles (‘island’) by single-electron tunneling
breaks down if correlated electron tunneling takes place. Under certain circum-
stances, correlated electron tunneling leads even to the conductance of a one-
dimensional channel although Coulomb blockade is expected.

For historical reviews, further readings and other approaches to the topic of
single-electron devices, the articles [1–8] are recommended. Especially for super-
conducting devices not treated here, we refer to [9,10], for proposals of using
single-electron devices as qubits to [11] (quantum dots as islands), and [12] (su-
perconducting devices).

The experimental data presented here have been collected during the last ten
years in our institute. For their contributions I would like to thank my coworkers
on this topic during that time – Jan Hüls, Matthias Keller, David Quirion, Jörg
Schmid, Yayi Wei, Armin Welker, Ulf Wilhelm, and Klaus v. Klitzing. Of course,
similar data can be found in literature published by other groups.

2 Single-Electron Charging Energy
and Coulomb Blockade Effect

Figure 1 shows an arrangement of an electrically uncharged metal island embed-
ded in a dielectric medium and surrounded by other metal electrodes which are
electrically connected. By transfering a single electron from the electrodes to the
island, the island is charged negative to q = −e and positive image charges q1, q2
spread over the electrodes (see Fig. 1b). Note, the overall charge of the system
compensates to zero: −e + q1 + q2 = 0. Similarly, by transferring an electron

J. Weis, Single-Electron Devices, Lect. Notes Phys. 658, 87–121 (2005)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2005
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(b)(a) (c)

−q
1

−q
2e1

q q
2

Electrodes

Metal Island

e+

Fig. 1. (a) A metal island embedded between electrodes which are electrically connec-
ted. Transfering an electron onto the island (b) or taking off the electron from the
island (c) charges the capacitor formed by the island and the electrodes.

from the electrically uncharged island to the electrodes, the island is charged
positively and negative image charges are induced on the surrounding electro-
des (see Fig. 1c). The arrangement resembles a capacitor configuration with the
capacitance CΣ where the island reflects one electrode of this capacitor and the
others form all together the counter electrode. For both charge configurations
(q = −e and q = e), the electrostatic energy EC

EC =
e2

2CΣ
(1)

is stored in the arrangement. The quantity EC is usually denoted as single-
electron charging energy1. This energy is required for the separation of a single
electron from its positive counter charge spread over the other conductors. It is
the electrostatic energy barrier felt by the single electron moving onto or from
the electrically neutral island.

Usually this energy EC is not noticeable since the island size and therefore CΣ
is large. However, for CΣ < 10−15 F which corresponds2 to the ‘self-capacitance’
CΣ = 4πε0εR of a metallic sphere with radius R < 1µm embedded in a dielectric
medium with ε = 10, EC exceeds the thermal energy kBT at T = 4 K. For
CΣ < 3·10−18 F which is fulfilled for R < 2.8 nm, even kBT at room temperature
(T = 300 K) is exceeded. From this, we have to conclude that the single-electron
charging energy EC is of importance to describe single-electron movements in
systems from mesoscopic size down to atomic size.

A simple two-terminal arrangement for discussing the consequence is shown
in Fig. 2a. A small island is embedded between two lead electrodes denoted as
source S and drain D. Thin insulators separate the island from the two leads.
These layers should be thin enough that – due to quantum mechanics – tunne-
ling of electrons through the insulator layers is possible, thick enough that it is
plausible to describe single electrons in the system as being localized either on
the metal island or the lead electrodes. Since the metal island is almost isolated,
the total charge on the metal electrodes is considered as being quantized in the
elementary charge e. Due to EC which is required for recharging the island by

1Sometimes [2] the quantity e2/CΣ is denoted by the same name.
2Counter electrode at infinite distance.
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Fig. 2. (a) Two-terminal arrangement for discussing the Coulomb blockade effect in
electrical transport. (b) The respective capacitance circuit. Note CΣ = CS + CD. (c)
Sketch of the expected non-linear IDS(VDS) characteristic with energy schemes for
distinct VDS values reflecting the energetical position of the Fermi levels of the island
for charge states q = −e and q = e relatively to the Fermi level of source and drain.

a single electron entering or leaving, electrical transport is suppressed around
VDS = 0 if EC � kBT (Coulomb blockade effect of electrical transport).

With increasing bias voltage VDS > 0, the electrostatic energy barriers for
adding an electron from source

∆ES→I = EC − e
CD

CΣ
VDS (2)

and the electrostatic energy barrier for an electron leaving to drain

∆EI→D = EC + e
CD

CΣ
VDS − e VDS (3)

are reduced as a consequence of the applied voltage VDS (The respective capaci-
tance circuit is given in Fig. 2b). Similar happens for VDS < 0. The suppression
of current is finally overcome for

|VDS| ≥ V
(th)
DS ≡ min

(
e

2CS
;

e

2CD

)
, (4)

and the drain-source current |IDS| rises rapidly with increasing |VDS|. If EC �
kBT , for such a two-terminal device a non-linear current-voltage characteristic
with threshold values lying symmetrically around VDS = 0 is obtained.
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3 Concept of a Single-Electron Transistor (SET)

Instead of overcoming the Coulomb blockade by increasing VDS, a gate electrode
G with variable gate-voltage VGS can be added to the arrangement (see Fig. 3a).
With increasing gate voltage VGS, the electrostatic potential of the island is
shifted due to the capacitance circuit sketched in Fig. 3b. With increasing VGS >
0, negative charge is accumulated on the island – not in a continuous but in
a step-like manner as sketched in Fig. 3c (single-electron charging). The first
electron is charged at VGS = V

(th)
GS when the electrostatic energy for an electron

on the island is lowered just compensating for EC, i.e.,

∆ES→I = EC − e
CG

CΣ
VGS

!= 0 , (5)

leading to the threshold voltage

V
(th)
GS =

EC

eCG/CΣ
=

e

2CG
. (6)

At this gate-voltage value, the charge state of the island fluctuates by e. Applying
a small drain-source voltage VDS, a directed current is measured between source
and drain – carried by single electrons passing one after the other the island.

What about charging the electrically neutral island by ∆N electrons from
the source lead? The electrostatic energy stored in such a charge configuration
(q = −∆N e) – under the condition that VDS and VGS are fixed – is given by

Eelst(∆N ;VGS,VDS) = −∆N e

(
CG

CΣ
VGS +

CD

CΣ
VDS

)
+

(∆N e)2

2CΣ
. (7)

The first term describes the potential energy of ∆N electrons at the electrostatic
potential which is found due to the capacitance divider at the electrically neutral
island. The second term takes into account the work which has to be done to
separate the charge q = −∆N e from its counter charge spread over the electrodes
source S, drain D and gate G.

Having already charged the island with ∆N electrons, the next electron ‘∆N+
1’ moving from source to the charged island feels at fixed applied VGS and VDS
the electrostatic energy difference

∆ES→I(∆N+1;VGS,VDS) = Eelst(∆N+1;VGS,VDS) − Eelst(∆N ;VGS,VDS)

=
(

∆N + 1
2

) e2

CΣ
− e

CG

CΣ
VGS − e

CD

CΣ
VDS . (8)

Similarly, having ∆N electrons on the island, the electron ‘∆N ’ feels for moving
towards drain the electrostatic energy difference

∆EI→D(∆N ;VGS,VDS) = Eelst(∆N−1;VGS,VDS) − e VDS − Eelst(∆N ;VGS,VDS)

= −
(

∆N − 1
2

) e2

CΣ
+ e

CG

CΣ
VGS − e

(
1 − CD

CΣ

)
VDS . (9)
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Fig. 3. (a) Three-terminal arrangement of a single-electron transistor. (b) The respec-
tive capacitance circuit. Note CΣ = CS + CD + CG. (c) With increasing gate voltage
VGS, electrons are accumulated on the island. Whenever the charge state can energe-
tically fluctuate by e, i.e., the energy for two charge states is degenerate, current IDS

flows for small applied VDS through the island, leading to a periodically modulated
IDS(VGS)-characteristic – the Coulomb blockade oscillations. For distinct VGS values,
the respective energy schemes are given.

It contains the final electrostatic energy −e VDS of the electron on the drain site.
The energy differences Eelst(∆n;VGS,VDS) −Eelst(∆n−1;VGS,VDS) with n ∈ {· · · ,

N − 1, N,N + 1, · · · } define an energy ladder with fixed energy level spacing
2EC = e2/CΣ which shifts linearly with VDS and VGS: For given VDS and VGS
the level ‘∆n’ reflects the energetical position of the Fermi level on the island rela-
tively to the Fermi levels of the two leads if the island is charged to q = −∆ne.
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The relative position of this energy ladder are given for distinct parameters
(VGS;VDS ≈ 0) in the energy schemes of Fig. 3c. In thermodynamic equilibrium,
∆n = ∆NG additional electrons are trapped on the island if

for VDS ≥ 0
∆ES→I(∆NG+1;VGS,VDS) > 0 and ∆EI→D(∆NG;VGS,VDS) > 0 , (10)

for VDS ≤ 0
∆EI→S(∆NG;VGS,VDS) > 0 and ∆ED→I(∆NG+1;VGS,VDS) > 0 . (11)

Whenever ∆ES→I = 0 or ∆EI→D = 0, the charge state of the island can
fluctuate by e. Applying a small drain-source voltage VDS, a directed current
is measured between source and drain. With changing the gate voltage VGS at
small VDS, the current is modulated with the gate voltage period

∆VGS =
e

CG
(12)

as sketched in Fig. 3c. This characteristic is denoted as Coulomb blockade os-
cillations (CBOs). Since the current is carried by single electrons passing the
island one-by-one, the three-terminal device with such a characteristic is named
single-electron transistor (SET) [13,14].

Evaluating (10) and (11) allows to define transport regions for a single-
electron transistor as a function of the drain-source voltage VDS and the gate
voltage VGS. The result is sketched in Fig. 4: Light grey shaded are the regions of
Coulomb blockade (fulfilling (10) and (11)) at low temperature where the electron
number is fixed. Fluctuations by only one electron charge −e are possible in the
adjacent regions. These are the regions of single-electron tunneling since there
the electrons are passing the island one after the other. Along the gate voltage
axis with VDS ≈ 0, the Coulomb blockade oscillations are obtained. With furt-
her increasing |VDS|, more and more charge configurations become energetically
possible. For distinct parameter configurations (VDS, VGS), the respective energy
scheme are depicted. For the metal single-electron transistor, the transport cha-
racteristics are periodic in VGS: With each gate voltage change ∆VGS = e/CG,
the same electrostatic energy barriers for recharging the island are present – only
with one electron more trapped on the island.

The borderlines between Coloumb blockade and single-electron tunneling re-
gime have the slopes

dVGS

dVDS

∣
∣
∣
∣∆ES→I=0

= −CD

CG
and

dVGS

dVDS

∣
∣
∣
∣∆EI→D=0

=
CΣ − CD

CG
. (13)

Note, these relations are valid for the special choice of the source electrode as
the reference electrode for all applied voltages.

One should also realize that the notation of the two different transport regions
of a single-electron transistor – Coulomb blockade and single-electron tunneling
regime – as a function of VDS and VGS are obtained due to energy considerati-
ons. Multi-electron transport is predicted at higher |VDS| values where regions of
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Fig. 4. Transport regions of a single-electron transistor as a function of VDS and VGS.
This pattern is usually referred to as ‘diamond-like’.

more than two charge states could coexist. However, SETs with strongly asym-
metric tunnel barriers also show single-electron transport at these higher |VDS|
values: An electron leaving via the thicker tunnel barrier is almost immediately
replaced by an electron tunneling through the thinner tunnel barrier; for oppo-
site drain-source voltage an electron entering the island via the thicker tunnel
barrier leaves usually faster via the thinner barrier than another electron can
enter via the thicker barrier. The dynamics of the system restrict the charge
fluctuations on the island to e. Under such conditions the current IDS increases
in a step-like manner with increasing |VDS| whenever another charge state has
become energetically available, i.e., a boundary line in Fig. 4 is crossed with
increasing |VDS|. The so-called Coulomb-staircase characteristic in IDS(VDS) is
obtained [15].
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4 Examples for the Realization
of Single-Electron Transistors

Two examples for the realization of a single-electron transistor are discussed
in this section. First, a device made from metal is shown to demonstrate that
small metal islands indeed offer transport characteristics dominated by Coulomb
blockade and single-electron charging effects although more than 109 electrons
are actually present in the condcution band of the island. In contrast, as the
second realization, a SET made from a semiconductor material is presented. It
contains a quantum dot as the island with a small number of trapped electrons
(about 10 to 20) and a discrete excitation spectrum, and even allows the in-situ
control over the tunnel coupling between island and leads. Due to their in-situ
tunability, such quantum dot systems can act as model systems for studying basic
phenomena in electrical transport through single molecules or atoms embedded
between lead electrodes.

Other arrangements and realizations of single-electron transistors can be fo-
und in the literature cited in the introduction.

4.1 Single-Electron Transistor Made from Metal

An example for a metal single-electron transistor made from aluminum is shown
in ‘Cross Section 1’ of Fig. 5a and as a scanning-electron microscope image in
Fig. 5b. The devices is fabricated by using a two-angle evaporation technique
also used to fabricate the first SET [16]: With electron-beam lithography, a two-
layer organic resist is patterned resulting in openings to the substrate with large
undercut (see ‘Cross Section 2’). In vacuum, aluminum layers are evaporated
twice under different angles through the openings onto the substrate. By an in-
situ oxidation between first and second evaporation process, a thin aluminum
oxide of few nanometers is formed on the first aluminum layer. The resist is
lifted off and a metal structure remains on the substrate. Due to the two different
evaporation angles, the metal patterns of the first and second evaporation process
are slightly shifted against each other leading to an overlap in certain regions.
In the overlap regions, the thin aluminum oxide acts as tunnel barriers between
both aluminum layers, whereas the uncovered aluminum is unavoidable oxidized
further in air. The island has a length of 1µm and a width of 0.1µm. The overlap
region defining the tunnel barriers towards the leads are 0.1µm by 0.1µm in
size. Coulomb blockade oscillations measured on this device at T = 0.1 K for
VDS = 80µV are shown in Fig. 5c. As the gate electrode, a conductive layer
in the substrate 86 nm below the surface is used. Due to the small size of the
device, the total capacitance CΣ – dominated by the overlap regions of the
tunnel junctions – is small leading to EC ≈ 0.1 meV. In Fig. 5d the measured
IDS(VDS, VGS) characteristics of a similar metal single-electron transistor (EC
slightly smaller) are shown. Clearly the Coulomb blockade regions are visible.
Beyond the respective threshold in VDS, the current IDS increases.
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measured at T = 0.1 K. (from Y.Y. Wei, J. Hüls et al., MPI-FKF)

4.2 Single-Electron Transistor Containing a Quantum Dot as Island

Quantum dots or zero-dimensional electron systems are objects where electrons
are confined in a small enclosure allowing the single electron only certain eigenva-
lues for its energy due to the wave character of electrons as quantum mechanical
particles. As sketched in Fig. 6, with decreasing the size of the island, the quasi-
continuous single-particle energy spectrum (like that of a metal) turns into a
discrete one (like that of an atom) if the deBroglie wavelength λF = h/

√
2mεF

of an electron at the Fermi energy εF of the respective bulk material becomes
comparable to the island diameter D.

A realization of a single-electron transistor with a quantum dot as island is
shown in Fig. 7 – denoted as split-gate quantum dot system: Base is a GaAs/
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Fig. 6. Enclosing electrons to a smaller space, only certain eigenvalues for their kinetic
energy become possible (Sketch!). Spatial enclosures with a discrete single-particle
spectrum are denoted as quantum dots.

Al0.33 Ga0.67As heterostructure containing a two-dimensional electron system at
the GaAs/AlGaAs heterojunction interface 86 nm below the surface. In GaAs,
the effective mass of an electron in the conduction band is rather small, m =
0.07m0 where m0 is the free electron mass. Therefore, single-particle energy
level spacing ∆ε of several meV are achieved for GaAs islands of few tens of
nanometers – large enough to be resolved at low temperature (kBT = 1 meV at
T = 12 K). To define the quantum dot system, metallic gates were deposited on
top of a mesa remained after partially etching the surface of the heterostructure.
The 2DES is electrically contacted by alloying metal at certain regions of the
mesa. The diameter of the area between the tips of the gate fingers is here about
0.35 µm. With applying negative voltages to the gate electrodes, the 2DES is
divided in parts, defining the quantum dot of about 0.2 µm in diameter between
the gate fingers, coupled by tunnel barriers to parts of the 2DES acting as source
and drain leads. In addition to these topgates, a metallic backgate electrode on
the reverse side of the undoped substrate (0.5 mm thick) is used to change the
electrostatic potential of the quantum dot by changing the applied voltage VBS.
In Fig. 7b, a typical curve of the conductance IDS/VDS versus the backgate
voltage for small drain-source voltage (VDS ≈ 5µV) is shown – the Coulomb
blockade oscillations (T = 0.1 K). In contrast to the CBO characteristic shown
for the metal single-electron transistor, the peak heights are strongly modulated
and the peak distances are not exactly periodic. Both effects are even emphasized
by applying a magnetic field as shown in Fig. 7c. This indicates that the character
of the electronic states of the quantum dot – changed by the magnetic field –
affects the electrical transport.
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Fig. 7. SET with quantum dot as island: (a) Metallic gates on top of a GaAs-AlGaAs
heterostructure are used to define a quantum dot system by partially electrostatically
depleting a two-dimensional electron system (2DES). (b) Coulomb blockade oscillations
as a function of the backgate voltage VBS. (c) Coulomb blockade oscillations IDS(VBS)
for different magnetic fields applied in parallel to the plane of the 2DES. (d) Differential
conductance dIDS/dVDS in greyscale as a function of VDS and VGS. (from J. Weis et
al., MPI-FKF)

5 Quantum Dot as an Interacting N -Electron System:
An Artifical Atom with Tunable Properties

Obviously the electrostatic model is not sufficient, i.e., the description has to be
extended. A better approach is to ask which is the energy necessary for adding
an electron into a given confining potential (defined by gate electrodes with elec-
trostatic potentials {Vi}, material composition and fixed charges due to donors
and acceptors) when already the number N of electrons is present. To answer
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this, N and N + 1 electrons have to be treated quantum-mechanically as inter-
acting N and N + 1 electron systems in the confining potential. A Hamiltonian
Ĥ(n; {Vi}) of n electrons modeling the electrostatics of realistic quantum dots
has the form [17]

Ĥ(n;{Vi}) =
n∑

s=1

p̂2
s

2m
−

n∑

s=1

eΦext(r̂s; {Vi}) + 1
2

n∑

s=1

n∑

s′=1
s′ �=s

e2G(r̂s, r̂s′) (14)

where p̂s and r̂s denote the momentum and position operator for electron s,
respectively. The quantity G(r, r ′) is the electrostatic Green’s function for de-
scribing the electrostatics of the system without the presence of the n electrons
[17]. The physical meaning of q G(r, r ′) is the electrostatic potential contribution
at position r caused by a point charge q located at r ′ in the given arrangement.
In particular, it describes the electrostatic electron-electron interaction in the
quantum dot taking into account the electrostatic screening effect by the elec-
trodes and the dielectric medium. Comparing (14) with (7), it becomes clear
that the effective electron-electron interaction (last term in (14)) is responsi-
ble for the Coulomb blockade effect in quantum dots. The confining potential
Φext(r; {Vi}) is given by the fixed charge distribution, the arrangement of the
electrodes and conduction band offsets due to the use of different materials (see
Fig. 8a). It is independent of the electron number confined in the quantum dot.
The electrostatic contributions to Φext(r; {Vi}) can all be expressed by G(r, r ′)
[17]. One should note that the confining potential depends linearly on the el-
ectrostatic potentials {Vi} of the electrodes, i.e., the electrostatic potential at
position r is linearly shifted with changing Vi, i.e.,

Φext(r; {Vi}) ∝
∑

i

αi(r )Vi (15)

where the quantity αi(r ) reflects the fraction of image charge induced by a point
charge at position r in the arrangment on electrode i.

By solving the Schrödinger equation

Ĥ(n;{Vi}) |n, l; {Vi}〉 = E(n,l;{Vi}) |n, l; {Vi}〉 (16)

a total energy spectrum E(n,l;{Vi}) for the confined n-electron system is ob-
tained for a certain set of applied voltages {Vi}. For convenience, the index l
represents a set of quantum numbers that characterizes the different n-electron
states |n, l; {Vi}〉 starting from l = 0 for the groundstate, and numbering the
excited states unambiguously further with increasing energy E(n,l;{Vi}).

Looking at the Hamiltonian (14), it becomes clear why quantum dots have
sometimes been denoted as artifical atoms [19,20] with tunable properties: The
confining potential for electrons in an atom (the Coulomb potential of the bare
nucleus) is replaced by Φext(r; {Vi}). The pure Coulomb interaction between
electrons in atoms has to be replaced by e2G(r, r ′) if electrostatic screening due
to the dielectric medium or surrounding electrodes is present. In principle, both
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electrodes. (δ) Conduction band offsets by using different materials. (b) Total energy
spectra for one, two and three electrons confined in a parabolic confining potential
(�ω0 = 2 meV) (adopted from D. Pfannkuche et al. [18]).

Φext(r; {Vi}) and G(r, r ′) can be designed to purpose. If the confining potential
obeys spatial symmetries, certain degeneracies in the electronic spectrum can be
expected. On the other hand, certain shapes of the confining potential allow to
consider the quantum dot as a chaotic system.

In a very popular model – the Constant Interaction Model (CIM) [21,15] –
the total energy E(n; {Vi}) is written as

E(n;{Vi}) =
n∑

s=1

εs − n e
∑

i

Ci

CΣ
Vi +

(n e)2

2CΣ
− n e · const (17)

where εs is the eigenenergy of the single electron ‘s’ in the (effective) confining
potential of the quantum dot. Due to Pauli’s principle, single-particle states
are sequentially occupied with increasing electron number n and the electron-
electron interaction is treated by the constant CΣ. This description is not gene-
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rally valid: One should note that – different to atoms – due to the larger size, in
quantum dots usually the electron-electron interaction is dominating the elec-
tronic properties and not the quantization effect on the kinetic energy due to the
confining of the electrons. The total energy spectrum becomes complex as shown
as an example in Fig. 8b. The electrons in the quantum dot feel each other and
behave correlated (which is an exciting subject on its own (see for recent review
[22])).

6 Transport Spectroscopy on Quantum Dot Systems

Having N electrons confined, they will end up in the groundstate |N, 0; {Vi}〉 at
low temperature. The minimum in energy required for adding another electron
to the system is achieved when ending in the groundstate |N + 1, 0; {Vi}〉 of the
N + 1 electron system. The energy ladder

µ(n;{Vi}) ≡ E(n,0;{Vi}) − E(n−1,0;{Vi}) , where
n ∈ {· · · , N − 1, N,N + 1, · · · } (18)

gives for fixed potentials {Vi} by its position relatively to the electrochemical
potentials (Fermi levels) µS and µD of source and drain the energy barriers
for recharging the quantum dot by a single electron. Under circumstances this
energy ladder is linearly shifted with changing one of the applied voltages VGS
and VDS: The characteristic ‘diamond-like’ transport regions of a single-electron
transistor as shown in Fig. 4 are recovered – although not that regular in size. The
boundaries between the different charge states in the VDS vs. VGS are obtained
with µS − µD = e VDS from

µ(n;{Vi}) = µS and µ(n;{Vi}) = µD

with n ∈ {· · · , N − 1, N,N + 1, · · · } . (19)

In Fig. 7d, the differential conductance dIDS/dVDS of the quantum dot sy-
stem is shown measured as a function of VDS and VBS. In the linear greys-
cale plot, white regions correspond to dIDS/dVDS < −0.1µS and black ones
to dIDS/dVDS > 2µS. Positive peaks in the differential conductance indicate
a step-like increase in the current IDS with increasing |VDS|, negative ones a
step-like decrease. Clearly the Coulomb-blockade regions are identified. In the
adjacent single-electron tunneling regions, additional peaks in the differential
conductance are observed indicating the opening of other transport channels
although the charge state of the quantum dot can only fluctuate by one elemen-
tary charge. These can be attributed to electrical transport using in competition
excited states of the quantum dot system [23–26].

What is the link between the total energy spectra of n and n + 1 electron
systems and that what is seen in the single-electron tunneling regime (‘trans-
port spectrum’)? In Fig. 9a, the fictitious total energy spectra for N and N + 1
electrons are given which lead to the energy ladder defined by the transistion
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Fig. 9. (a) Fictitious total energy spectra of N and N + 1 electrons confined in
the quantum dot. Bold are the groundstate energies. (b) Plot of the transition
energies E(n, k; {Vi}) − E(n − 1, l; {Vi}) as energy levels. Energy levels represen-
ting differences between groundstate energies are bold and marked the respective
n ∈ {· · · , N − 1, N, N + 1, · · · }. (b) Threshold lines for additional channels extrac-
ted from (a). Whether all are visible depends in detail on (quasi-)selection rules and
the dynamic of the system.

energies E(N+1,k;{Vi})−E(N,l;{Vi}) and plotted in Fig. 9b. It includes the transi-
tion energy µ(N ; {Vi}) = E(N+1,0;{Vi}) − E(N,0;{Vi}) between the groundstates.
With changing a gate voltage VGS or the drain-source voltage VDS, the energy
ladder is shifted, i.e., these levels come in resonance with µS or µD for certain
(VGS, VDS) values,

E(N+1,k;{Vi}) − E(N,l;{Vi}) = µS or
E(N+1,k′;{Vi}) − E(N,l′;{Vi}) = µD . (20)

By this, an additional transport channel might be opened on source or drain
side, respectively. However, it requires that the electron system of the quantum
dot is not captured in one of the groundstates and remains there, but allows for
fluctuations between N and N + 1, i.e., besides (20) at the same time

µS ≥ µ(N+1;{Vi}) ≥ µD (VDS > 0) or
µD ≥ µ(N+1;{Vi}) ≥ µS (VDS < 0) (21)

has to be fulfilled. Condition (20) defines for diverse l and k (l′ and k′) threshold
lines for additional transport channels in the VGS versus VDS plane. Fulfilling
this requirement, the transition |N + 1; k〉 → |N ; l〉 (|N ; l′〉 → |N + 1; k′〉) might
be usable for transport at these {Vi} if the initial state |N + 1; k〉 (|N ; l′〉) for
this transition is reached regularly via other transitions. It leads to the pattern
depicted in Fig. 9b.

With decreasing the size of a quantum dot, the single-particle eigenenergy
spacing ∆ε = εi − εj increases and might even exceed the electron charging
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Fig. 10. For increasing the ratio ∆ε/EC, the energy level scheme shows less tran-
sition energies. Therefore less additional transport channels due to (single-particle-)
excitations of the quantum dot are expected in the single-electron tunneling regime.

energy EC due to the electron-electron interaction on the quantum dot: The
single-electron charging energy – being a consequence of the unscreened electron-
electron interaction on the island – scales like EC ∝ 1/εD with the island diame-
ter D. The level spacing in a parabolic confining potential (taken as the simplest
example) scales like ∆ε = �ω0 = h2/(2mD2). As shown in Fig. 10, with increa-
sing ratio ∆ε/EC, the Coulomb blockade regions in the (VGS, VDS) plane vary
more and more in size with the electron number, and a less number of addi-
tional channels due to transitions to excited states occur in the single-electron
tunneling regime.3

In a first approach, the dynamics of electron transport can be described by
tunneling rates included in a master equation ansatz. The rate is proportional to
the tunneling probability for an electron leading to the transition |N + 1; k〉 →
|N ; l〉 (|N ; l′〉 → |N + 1; k′〉). Obviously such a transition is weighted by the
strength of the spatial overlap of the wavefunction of the quantum dot and the
respective reservoir. However, such a transition might also obey certain (quasi-
)selection rules due to spin conservation or correlation effects of the n-electron
system in the quantum dot [27–31]. Therefore, the properties of the N + 1 and
N -electron state are of importance. It might even occur that the occupation of

3This should be understood as a trend. Indeed, low lying excitations might be
possible in a correlated electron system.
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certain excited states blocks the electron transport through the quantum dot
[24] – as visible by the negative differential conductance in Fig. 7d.

7 Summarizing the Conditions for Coulomb Blockade

To summarize, the Coulomb blockade effect is observable in electrical transport
through small islands if

• the single-electron charging energy exceeds significantly the thermal energy,

µ(N+1;{Vi}) − µ(N ;{Vi})
2

� kBT (EC � kBT ) , (22)

• the applied drain-source voltage VDS is not too large,

e |VDS| < µ(N+1;{Vi}) − µ(N ;{Vi}) (e |VDS| < 2EC) , (23)

• the tunnel coupling to the leads is small, i.e., the island can be considered
as (quasi-)isolated. Due to Heisenberg’s uncertainty relation, the dwell time
τH of an electron on the island has to be so long that the uncertainty ∆εH ≈
h/τH for the energy of an electron on the island does not exceed the single-
electron charging energy, i.e.,

τH >
2h

µ(N+1;{Vi}) − µ(N ;{Vi})
(τH > h/EC) . (24)

This is usually achieved if the tunnel barriers to the lead electrodes have a
conductance which is much less than e2/h ≈ (26 kΩ)−1 – the conductance
of a ballistic (one-mode) one-dimensional channel.

Since the Coulomb blockade is based on an electrostatic effect, Coulomb
blockade and single-electron charging effect can be observed for tunneling through
quasi-isolated

• mesoscopic metal islands,
• mesoscopic superconducting islands,
• mesoscopic quantum dots,
• molecules and atom clusters, and
• bounded electron states to impurities.

Several examples will be given in the course of this school, for instance, single-
electron transistors containing a carbon nanotube as the island.

Depending on the confined electron number, size and effective mass of the
electrons, quantum dots resemble in one limit metal-like islands, in the other
limit they mimic atom-like properties. Furthermore, the electronic structure of
quantum dots can be affected by an applied magnetic field which allows to
study the character and degeneracy of electronic states and its influence on
electrical transport. Due to their tunability, such quantum dot systems have been
used as model systems for investigating interacting N -electron systems and for
approaching an understanding of electrical transport through single molecules
or single atoms weakly coupled to leads.
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8 Some Applications of Single-Electron Transistors

8.1 SET as a Voltage Signal Amplifier

The single-electron transistor can be used to amplify a voltage signal. Biasing
the SET with a constant current IDS as shown in Fig. 11, the voltage VDS drops
between the source and drain contact which depends in its magnitude on the
applied gate voltage VGS. Contour lines of constant current IDS are obtained in
the VDS vs.VGS plane parallel to the borderlines defining the different transport
regions of the SET as sketched in Fig. 4: A change dVGS causes due to (13) the
change

dVDS = −CG

CD
dVGS or dVDS =

CG

CΣ − CD
dVGS . (25)

The voltage signal dVGS is amplified in dVDS if
∣
∣
∣
∣
dVDS

dVGS

∣
∣
∣
∣
IDS=const

> 1 , (26)

i.e., voltage gain is present. For the SET this can only be obtained for the gate
voltage regime where the first relation of (25) is valid. That means CG > CD
[32]. Thus the capacitive coupling of the SET island to the gate electrode where
the voltage signal is applied has to be chosen larger than the capacitive coupling
to the drain electrode where the output voltage dVDS arises. The same can be
expressed more general in other words: The SET has to be designed in such a
way that the electron charge added to the island induces a larger fraction αG of
its image charge on the gate electrode than αD on the drain electrode,

αG > αD where αG =
CG

CΣ
and αD =

CD

CΣ
for metal SETs. (27)

This is at least required to obtain a voltage gain described by relation (26).

VDS

I DS const

CD

Slope
CG

−

Slope

CDCΣ

CG
−

VDS

I DS = 0

Source Drain

GateVGS Island

IDS

VGS

Fig. 11. SET as voltage signal amplifier.
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8.2 SET as an Electrometer Sensitive to a Fraction
of the Elementary Charge

The electrostatic potential of electrons on the SET island might not only be
changed by voltages applied to adjacent electrodes, but also by putting a charge
close to the SET island. As sketched in Fig. 12, adding a negative (positive)
charge Q shifts the CBO characteristic towards positive (negative) values of
VGS. How sensitive is the single-electron transistor to charges? If the charge
Q = ±e would be added directly to the island, then the CBO characteristic
is shifted by one period along the gate voltage axis. In this sense, the SET is
a highly sensitive electrometer which is even able to detect easily a fraction
of the elementary charge e by the change in its characteristics if the charge is
added closely to the island [33]. SETs have been demonstated as electrometers
with a charge sensitivity down to 8 · 10−8 e/

√
Hz at 10 Hz [34]. Incorporating

the SET into a radio-frequency resonance circuit – denoted as RF-SET [35]
– fast charge fluctuations are detectable (1.2 · 10−5 e/

√
Hz at 1.1 MHz). This

high charge sensitivity offers on one hand a ultrasensitive electrometer, on the
other hand it is a disadvantage for applications where a stable and reproducible
SET characteristic is required for a large number of SET devices – like in very-
large scale integration (VLSI) of digital circuits. Telegraph noise due to charge
fluctuations in the SET surroundings makes them almost useless for this purpose.

VGS’VGS’
∆

VDS

Q = 0

VDS 0

VGS

IDS
Q = 0

Source Drain

Gate

Q

IslandVGS

IDS

Fig. 12. SET as ultrasensitive electrometer.

8.3 SET as an Electrostatic Sensor in a Scanning Probe Microscope

The sensitivity of a single-electron transistor to the electrostatic environment
can be used to measure chemical potential variations of conducting materials
affected by external parameters [36]. A SET can even be incorporated into a
scanning probe microscope [37]: As sketched in Fig. 13, a SET is fabricated on
a microscopic glass tip which is then scanned over a substrate. Monitoring the
changes in the SET characteristics as a function of position, the SET can be
used as a local probe for the local electrostatic potential variations along the
substrate surface. With reducing the distance d between SET and substrate, the
capacitance between substrate and SET island reduces roughly like 1/d. There-
fore the CBOs, observed as a function of the voltage applied to the substrate,
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Fig. 13. SET as electrostatic sensor on a tip of a scanning probe microscope.

decrease in their periodicity, squeezing to a fix point on the substrate-SET vol-
tage axis just compensating for the instrinsic contact voltage between SET and
substrate. Such an SET on a scanning tip can be considered as an alternative
to a scanning force microscope running in the Kelvin probe mode [38] where the
local electrostatic force between tip and substrate is minimized by tuning the
substrate-tip voltage.

8.4 SET as a Current Rectifier

As shown in Fig. 4, the capacitance ratios −CD/CG and (CΣ − CD)/CG are
responsible for the slopes of the boundary lines between Coulomb blockade and
single-electron transport regions in the VGS vs. VDS plane. Therefore, threshold
values V (th)

DS at fixed VGS lie usually asymmetrically with respect to VDS = 0.
Therefore, SETs display a non-linear IDS(VDS) characteristics where the asym-
metry of the characteristics is tunable by VGS. Due to the non-linearity of such
devices around VDS = 0, frequency mixing of ac voltage signals is possible aro-
und VDS = 0. Especially a rectification process can occur: An applied ac bias
voltage VDS(t) results in a time-averaged net dc current [39]. Depending on the
ratio CD/CΣ, three different behaviours are expected (see Fig. 14): In the case
of CD/CΣ > 1

2 , for a fixed ac bias modulation with |VDS(t)| � e/CΣ, the se-
quence in the dc current polarity is zero/positive/negative/zero with increasing
VGS from one Coulomb blockade region to the next. In the case CD/CΣ < 1

2 the
sequence is zero/negative/positive/zero. Only in the case CD/CΣ = 1

2 , the net
current is basically zero over the whole VGS range.

9 The SET for Very-Large Scale Integration (VLSI)
of Digital Circuits?

Carrying the current by electrons passing the island one-by-one and being swit-
ched on and off by the elementary charge, the single-electron transistor can
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be considered as the ultimate transistor. Dealing with the smallest amount of
charge, it has been suggested with presenting the concept of a SET in the mid
1980´s that integrated circuits based on SETs would lead to lowest power con-
sumption.

It was already pointed out, the sensitivity of a SET on single-electron charge
fluctuations is a strong disadvantage in this context [40]. Despite of this, the
question arises: Is the SET conceptionally a severe candidate for replacing the
MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) which is used
nowadays as the electronic switch in digital circuits? Both transistor concepts
belong to the same class of electrostatically controlled switches and obey there-
fore the same electrostatic requirements for being a good switch for this applica-
tion. The answer is basically ‘no’ [41,40] which will be further explained in the
following.

The overall power dissipation is a severe problem of nowadays microprocessor
chips. The only known concept for logical circuits, fulfilling the requirement of
reliable computation [42] and thereby strongly suppressing the standby power
dissipation, is based on two complementary working switches (see Fig. 15). It
has lead to what is known as CMOS technology. Single-electron transistors can
be biased to different working points and then act complementary (one turns
on and the other off, controlled by the same voltage signal) [43]. However the
circuit concept requires that the transistors have voltage gain. This is hardly to
achieve for a single-electron transistor working at room temperature: The island
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size has to be only few nanometers to reach the high single-electron charging
energy, and at the same time the island has to be coupled capacitively stronger
to the gate electrode than to the leads (αG > αD)!

The voltage swing ∆V defines the difference in the voltage levels representing
logic ‘0’ and ‘1’. These are almost given by the positive and negative supply
terminals denoted by ‘0’ and ‘VDD’ in Fig. 15. The voltage ∆V drops as the
drain-source voltage over the transistor (see Fig. 15c and d): The ‘on’-current
driven through the transistor determines the speed by which the logic gates can
switch. The ‘off’-current is a leakage causing power dissipation even when the
circuit is not doing useful computation (static condition). VLSI requires typically
Ion/Ioff > 108 for fulfilling the required performance.

A switch based on tuning an energy barrier electrostatically via a gate voltage
leads to the superior characteristic

Ion
Ioff

= exp
αG e∆VGS

kBT
. (28)

The ratio between ‘on’ and ‘off’ current depends exponentially on the gate vol-
tage swing ∆VGS which is at the same time ∆V – the difference between the
voltage levels representing the logic ‘0’ and ‘1’ state. The quantity αG is limited
by 0 ≤ αG ≤ 1 and gives the fraction of image charge which is induced on the
controlling gate electrode by a charge in the channel of the electrostatic switch.

MOSFETs offer such an exponential characteristic where αG is close to one.
Actually this electrostatic requirement (αG → 1) is mainly the reason why MOS-
FET have to shrink in all spatial dimensions, and therefore the gate oxide of a
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0.1 µm MOSFET has been reduced already to 4 nm thickness! For SETs working
at room temperature, again, the request on the electrostatics αG close to one is
hardly to achieve.

MOSFETs offer for the ‘on’-current 0.5 mA per µm channel width – a value
which has remained constant over the last decades. Conceptionally, SETs are
limited in their capability in driving a current since electrons are passing the
island one-by-one. To have a large Ion, the dwell time of an electron on the is-
land has to be short. Therefore, the tunnel coupling has to be enhanced which
leads to a stronger leakage Ioff in the ‘off’-state. The ratio Ion/Ioff cannot follow
an exponential dependence on the gate voltage which make SETs worse: For a
certain ‘on’-current – required for recharging the connections and the inputs of
the following logic gates –, the ‘off’-current gets too high. This might be com-
pensated by increasing ∆V which again requires that the single-electron charging
energy is enlarged, i.e., the island size has to be shrinked even more. We have to
state [41]: Single-electron transistor circuits cannot fulfill the expectation of low
power dissipation at reasonable speed performance.

Note, these electrostatic constraints are also valid for using molecules as
islands as long as their switching mechanism is purely based on tuning an energy
barrier electrostatically. In conclusion, to overcome the severe problems of VLSI,
either new circuit design concepts are required – which have not been invented
up to now – or a switch has to be found which offers αG > 1 in relation (28).
Here is indeed potential for molecules if the switching of the electrical path is
controlled by the conformation change of the molecule, induced by an applied
electrical field.

10 Charge-Stability Diagram of Two-Island Devices

Up to now we have considered only devices with one island embedded between
electrodes of defined electrostatic potentials. Examples for two-island arrange-
ments are depicted in Fig. 16. Both islands are directly or indirectly connected
via tunnel barriers to electrodes. Without a capacitive coupling, the islands do
not feel each other. Therefore, in the ideal case, two gate electrode can be used
to control independently the charge state of the two islands. As a function of
the two gate voltages VG1,S and VG2,S, the charge configuration of the two-island
arrangement is stable within rectangular regions (indicated by dashed lines in
Fig. 16). Allowing capacitive interaction between both islands, the gate voltage
variations shifts the electrostatic potentials of both islands, and the charge states
of the islands affect each other. The charge stability diagram divides under such
a capacitive coupling between the islands into a honeycomb pattern as depicted
in Fig. 16.

All the two-island arrangements depicted in Fig. 16 have this charge stability
diagram. Which of these borderlines between the stable regions are actually seen
in electrical transport depends on how source and drain electrodes are connected.
For the arrangement (I), for instance, only the triple points are visible.
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Fig. 16. Charge stability diagram valid for the two-island arrangements (I) to (IV) for
VDS = 0 – denoted as ‘honeycomb’ pattern.

By using quantum dots as islands, molecule-like states can be formed [44,45]
by increasing the tunnel coupling between these ‘artifical atoms’. The charge
stability diagram pattern deviates at the triple points.

11 Single-Electron Turnstile and Single-Electron Pump

Having control over single electrons, why not creating a device which transfers a
single electron within a cycle – controlled by external ac voltage signals – from
source to drain? The current passing such a device is determined by the cycle
frequency f ,

IDS = e f . (29)

Such a devices would allow to define a current standard and to close the quantum
metrological triangle [13,1] depicted in Fig. 17a: Three basic physical quantities
– current I, voltage V and frequency f – are linked by three fundamental effects
– the Josphson effect connects V with f , the quantum Hall effect V with I, and
perhaps a single-electron device obeying (29) connects I with f . Closing this
triangle would allow to represent their units with higher precision and even to
check whether the fundamental relations given in Fig. 17 are indeed valid.

One version of such a single-electron device is sketched in Fig. 17b denoted
as single-electron turnstile: The tunnel barriers of a single-electron transistor are
tuned similarly to the cycle which the gates of a water lock have to follow to
transfer a ship between two water levels through the lock. The Coulomb blockade
effect ensures that the island is charged each cycle only with one electron. Such
a turnstile with tunable tunnel barriers has been realized by using a split-gate
quantum dot [46].

Another version of such a single-electron device obeying (29) is shown in
Fig. 17a: By changing the gate voltages in time in the way sketched in Fig. 17c,
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electron pump.

one electron is transferred within such a cycle via the islands from source and
drain. These phase-locked variations of the gate voltages decribe a path which
encircles one triple point in the charge stability diagram of Fig. 16. The two-
terminal arrangement of Fig. 17c behaves as a single-electron pump [47].

Two islands are enough to perform single-electron pumping. However, several
islands in series are required to obtain a high accuracy: Correlated tunneling (co-
tunneling) of electrons through the device has to be suppressed because such
processes lead to a leakage. Correlated electron tunneling is the topic of section
13. An accuracy of ∆IDS/IDS ≈ 10−8 has been achieved [48] in single-electron
pumps with seven islands in series, i.e., one electron is missed within 108 cycles.
Unfortunately the current which is driven through a single pump is too small (f
about few MHz) for allowing to close the quantum metrological triangle.
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Another approach [49,50] uses surface acoustic waves (SAW) to confine elec-
trons which then have to pass – traveling with this SAW – a small contriction. In
another proposal, a certain amount of electrons is shuttled mechanically between
source and drain [51].

12 Single-Electron Devices as Primary Thermometer

One-dimensional arrays of M small metal islands of almost same size and tunnel
junctions offer at low temperature a pronounced nonlinear IDS(VDS) characte-
ristic which is rather similar to the one of the single-island arrangement shown
in Fig. 2. With increasing the temperature to T > EC/kB, thermal fluctuations
diminish the Coulomb blockade effect and the IDS(VDS) characteristic becomes
more and more linear with increasing T . The deviation is still seen close to
VDS = 0 which is better resolved by measuring the differential conductance
dIDS/dVDS as a function of VDS: As shown in Fig. 18, a dip is visible around
VDS = 0. Based on rate equations it can be shown [52,53] that the depth of the
dip scales like EC/3kBT , whereas the full-width V1/2 at half of the dip depth is
described by

e V1/2

(M + 1) kBT
= 5.439 · · · . (30)

This allows to use such an array as a primary thermometer since V1/2 does not
depend on the device parameters except of the number M of islands. It has
turned out that slight variations in the device parameters (island size and tun-
nel junction) do not significantly affect the validity of (30). Such thermometers
are nowadays commercially available products (from Nanoway, Finland). The
measurable temperature range depends on the single-electron charging energy
EC which can be designed by the junction and island size. Such single-electron
devices might be able to replace established temperature standards used at low

V1/2

k  T >B

1/2eV

k  TB

= (M+1) 5.439...

EC

VDS

dI/dV
DS

VDS

DRAINSOURCE

VDS

M Islands
IDS

Fig. 18. Primary thermometer.
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temperature, i.e., in the range of few milliKelvin to few tens of Kelvin. Two-
dimensional arrays of small islands show similar behaviour [53].

13 Breakdown of the Single-Electron Tunneling Picture

In the limit of weak tunnel coupling and at low but finite temperature, the dyna-
mics of single-electron transport is usually described by temperature-dependent
rate equations [15,21,54,18] revealing the basic features of Coulomb blockade and
single-electron tunneling. By this approach, only processes involving a tunneling
event of an electron through one of the barriers are taken into account. This does
not work in the case of strong tunnel coupling and – as pointed out in Sect. 14 –
sometimes even not in the weak tunnel coupling regime.

Besides thermally induced fluctuations in the number of electrons on the
island, quantum fluctuations occur and become stronger with increasing the
tunnel coupling to the lead electrodes. Simple examples for this are so-called
co-tunneling events (Fig. 19) [55]: An electron from one of the leads occupies
the island while at the same time another electron leaves the island to one of
the leads. Since the charge state on the island is not changed by this correlated
tunneling event, no single-electron charging energy has to be paid. Even in the
Coulomb blockade regime, this leads to a net current flow between source and
drain for |VDS| > 0. The charge state of the island is only virtually changed.
Under finite VDS bias, the electron system confined in the quantum dot can even
be excited by such correlated tunnel processes (inelastic cotunneling). Important
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1
2
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Fig. 19. Cotunneling as the simplest correlated tunneling event: Adding an electron
while at the same time an electron leaves the island allows electron transport between
source and drain even in the Coulomb blockade regime. Transport channels due to
cotunneling open at positions in |VDS| > 0 (independent of VGS) which are given by the
energy difference leading to an excitation of electron system confined in the quantum
dot. Such an excitation in the quantum dot can also be taken away by cotunneling.
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to note, transport channels due to correlated tunneling are opened at certain
threshold values of VDS, independent of VGS (see Fig. 19). This distinguishes
them from transport channels opened for single-electron transport. Opening such
a cotunneling channel leads to a step-like change in the differential conductance
dIDS/dVDS with increasing |VDS|. Elastic cotunneling, which uses the transition
between the groundstates |n, 0〉 and |n+1, 0〉 as the intermediate transition, can
already occur at VDS = 0.

This virtual occupation leads effectively to a broadening of the energy levels
depicted in the energy schemes for the quantum dot. Usually these correlated
tunneling processes can be treated as a small contribution. However, this is not
always true as shown in the following.

14 Kondo Effect in Single Quantum Dot Systems

Figure 20b shows the differential conductance dIDS/dVDS through a small quan-
tum dot (Fig. 20a) as a function of VDS and VGS. For the case of weak tunnel
coupling to both leads, the Coulomb blockade region is well resolved. With in-
creasing the tunnel coupling while keeping the temperature, the Coulomb block-
ade region is no longer well defined, but the remarkable feature is the appearance
of a peak in the differential conductance at VDS = 0 over the whole Coulomb
blockade regime [56–59]. It becomes stronger with increasing the tunnel cou-
pling, but disappears with increasing the temperature (Fig. 20c). It means that
the quantum dot is highly conductive at low temperature and less conductive
at high temperature. Important to note, the position of this zero-bias anomaly
remains unaffected by VGS, although the electronic states of the dot are shif-
ted by VGS, which indicates that the island is effectively not charged, i.e., that
correlated electron tunneling is here of importance. It has been observed [60]
that even the conductance 2e2/h is reached for this zero-bias anomaly. Zero-
bias anomalies are not observed for all Coulomb blockade regions, i.e., certain
requirements have to be fulfilled.

Predicted in 1988 [61,62] and experimentally demonstrated in 1998 [56], the
interpretation of this zero-bias anomaly is based in the simplest case on the
so-called Anderson impurity model [63]. The model has been used to describe
the Kondo effect observed at low temperature in the resistivity of metal slightly
doped with magnetic impurities. The (extended) Anderson impurity model is
depicted in Fig. 21: A spin-degenerate localized electron state is tunnel coupled
to two electron reservoirs. Its energy lies below the Fermi level of the reservoirs,
i.e., it is always occupied by an electron with spin-up or spin-down. Occupation
of the localized state by two electrons at the same time is suppressed due to the
electron-electron interaction U = 2EC on the island. Solving this problem, it
turns out that correlated electron tunneling of lowest order (cotunneling) is not
enough to descibe the transport through such an island: The electronic state of
the island hybridizes with the electronic states of the leads forming a spin-singlet
state, although the energy level of this localized state is deep below the Fermi
level of the reservoirs. At low temperature, even a small tunnel coupling to the
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Fig. 20. (a) Sketch of the experimental arrangement of a single quantum dot defined in
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coupling to the leads. A zero-bias anomaly – identified as a Kondo peak – develops
at VDS = 0 within the Coulomb blockade region. (c) Temperature dependence of the
Kondo peak taken in the middle of a Coulomb blockade region (from another sample).
(from J. Schmid et al., MPI-FKF)

leads causes correlated tunneling of electrons permanently flipping the spin state
of the island. This leads to an effective density of state on the site of the impurity
pinned to the Fermi level of the reservoirs (see Fig. 21). Electron transport is
possible around VDS = 0. The weaker the tunnel coupling and the deeper the
impurity level, the lower the temperature has to be to observe this Kondo effect.
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The reference scale is given by the so-called Kondo temperature TK

kBTK =
√
Γ U

2
exp

[
−π (εF − ε0) (U + ε0 − εF)

Γ U

]
(31)

where the energy Γ describes the broading of the energy level due to the tunnel
coupling of the impurity (quantum dot) state to the leads, and εF − ε0 the
energetical distance of the level on the impurity site to the Fermi level of the
reservoirs. A large U – basically given by the electron-electron interaction – and
large Γ enlarges the Kondo temperature, i.e., the Kondo effect is observed at
higher temperature.

Magnetic field dependent measurements reveal that spin-degeneracy usually
is responsible for the Kondo effect in quantum dot systems. Suggested by the
Constant Interaction Model, at the beginning the Kondo effect has been expected
only for an odd number of electron on the quantum dot (odd-even parity effect).
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However, it can also be observed for even electron numbers [59,64,65]. The elec-
tronic structure of a quantum dot is more complex than assumed by the CIM.

15 Two Electrostatically Coupled Single-Electron
Transistors: More than the Sum of Two

The Anderson impurity model describes two separate electron systems labeled
by an index which is usually identified with the spin quantum number (see
Fig. 22a). The only interaction between both ‘spin’ electron systems happens
on the impurity (quantum dot) site: Occupation by two electrons at the same
time is suppressed due to the Coulomb interaction on this site. Interpreting the
‘spin’ index of the Anderson impurity model as the index distinguishing between
two spatially separated electron systems, another realization of the Anderson
impurity model becomes feasible [66]: a system consisting of electrostatically
coupled quantum dots with separate leads to each quantum dot (see Fig. 22a).
The mapping works [66] if (1) an energetical degeneracy is present in occupying
either the upper or the lower quantum dot, (2) the groundstate of each quantum
dot is not degenerate, excited states are energetically well separated.

An experimental setup to implement this arrangement is shown in Fig. 22b:
By etching the pattern shown as an SEM image into a GaAs-AlGaAs hetero-
structure containing two 2DESs separated by a insulating 40 nm thick AlGaAs
barrier, two strongly electrostatically coupled quantum dots are formed. By al-
loying metal contacts and by using top and back gates for locally depleting the
upper or lower 2DES, the quantum dots are separately contacted.

In Fig. 22c, the conductance through the upper quantum dot is shown as
a function of the gate voltages V1,2 and VG (see Fig. 22b). A honeycomb-like
structure is visible which reflects strong electrostatic interaction between both
quantum dots. Along the lines marked by ‘a’, single-electron tunneling occurs
through the upper quantum dot. Along the lines marked by ‘c’, single-electron
fluctuations are possible for the lower quantum dot, but not visible in the current
through the upper quantum dot. Along the lines marked by ‘b’, current through
the upper quantum dot is detected – although not expected within the single-
electron tunneling picture for electrostatically coupled quantum dots. Along such
lines, an energy degeneracy of having an additional electron either on the upper
or lower quantum dot exists – one prerequisite of the Anderson model. Due to the
predictions for the Anderson model, we expect to see a peak in the differential
conductance versus drain-source voltage at the positions along the lines marked
by ‘b’. Such a trace taken in the middle of a line ‘b’ is shown in Fig. 22d. The
observed peak indicates [67] that a simple co-tunneling process – adding an
electron in the upper quantum dot while at the same time taking off an electron
from the lower quantum dot (and vice versa) – is not enough to explain the
electron transport. Correlated tunneling processes of higher order have to be
taken into account – Kondo physics is present.

In conclusion, closely packed single-electron transistors with atom-like islands
might show not only electrostatic interaction but might form also a correlated
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quantum mechanical state making them highly conductive in the regime where
at higher temperature (beyond the Kondo temperature of the arrangement)
Coulomb blockade is observed.
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Abstract. Full counting statistics is a fundamentally new concept in quantum trans-
port. After a review of basic statistics theory, we introduce the powerful Green’s func-
tion approach to full counting statistics. To illustrate the concept we consider a number
of examples. For generic two-terminal contacts we show how counting statistics eluci-
dates the common (and different) features of transport between normal and supercon-
ducting contacts. Finally, we demonstrate how correlations in multi-terminal structures
are naturally included in the formalism.

1 Introduction

The probabilistic interpretation is a fundamental ingredient of quantum mecha-
nics. While the wave function determines the full quantum state of a system
and its evolution in time, observable quantities are related to hermitian ope-
rators. Expectation values of these operators determine the average value of a
large number of identical measurements. However, an individual measurement
yields in general a different result. Applying this idea to a current measurement
in a quantum conductor, leads directly to the concept of full counting statistics
(FCS): during a given time interval t0 a certain number of charges will pass
the conductor. To predict the statistical properties of the number of transferred
charges we need a probability distribution. The theoretical goal is to find this
distribution.

1.1 Overview

In this article we give an introduction to the field of full counting statistics in
mesoscopic electron transport. We will concentrate on the powerful technique
– using Keldysh-Green’s functions – which at the same time is also based on
microscopic theory. To accomplish this goal we will first review concepts of ba-
sic statistics, which are relevant for counting statistics. In the next section we
address the microscopic derivation of FCS using Keldysh-Green’s functions. In
the rest of the article we demonstrate the use of counting statistics in a number
of examples, like two-terminal contacts with normal and superconducting leads,
diffusive metals and, finally, multi-terminal structures. But first we review briefly
the development of the field.
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1.2 History

Full counting statistics has its roots in quantum optics [1], where the number
statistics of photons is used, e. g., to characterize coherence properties of photon
sources. The major step to adopt the concept to mesoscopic electron transport
has been undertaken by Levitov and Lesovik [2]. Since then the theory of FCS
of charge transport in mesoscopic conductors has advanced substantially, see
[3,4]. In [2] it was shown that scattering between uncorrelated Fermi leads with
probability T is described by a binomial statistics P (N) =

(
M
N

)
TN (1 − T )M−N .

Here, P (N) is the probability, that out ofM = 2et0V/h independent attempts N
charges are transferred. Furthermore, Levitov and coworkers studied the coun-
ting statistics of diffusive conductors [5], time-dependent problems [6] and of
a tunnel junction [7]. A theory of full counting statistics based on the powerful
Keldysh-Green’s function method was initiated by Nazarov [8]. This formulation
allows a straightforward generalization to systems containing superconductors
[9,10] and multi-terminal structures [11,12]. Classical approaches to FCS were
recently put forward for Coulomb blockade systems [13,14], and, for chaotic ca-
vities based on a stochastic path-integral approach [15]. The field of counting
statistics in the quantum regime is closely related to the fundamental measuring
problem of quantum mechanics, which has been addressed in a number of works
[6,16–21]. Expressing the FCS of charge transport by the counting statistics of
photons emitted from the conductor provides an interesting alternative to clas-
sical counting of electrons [22]. Counting statistics has been addressed by now
for many different phenomena

• Andreev contacts [23]
• generic quantum conductors [13,24–26]
• adiabatic quantum pumping [27–30]
• qubit-readout [17,31–33]
• superconducting contacts in equilibrium [9]
• proximity effect structures [10,34–37]
• cross-correlations with normal [38] or superconducting contacts [12,39]
• entangled electron pairs [40,41]
• phonon counting [42]
• relation between photon counting and electron counting [43]
• current biased conductors [44]
• interaction effects: weak and strong Coulomb blockade [14,45,46]
• multiple Andreev reflections in superconducting contacts [47,48].

Very recently, an important experimental step forward was achieved. Reulet,
Senzier, and Prober measured for the first time the third cumulant of current
fluctuations produced by a tunnel junction [49]. Surprisingly the measured vol-
tage dependence deviated from the expected voltage-independent third cumulant
of a simple tunnel contact [2,25]. A subsequent theoretical explanation is that
the third cumulant is in fact susceptible to environmental effects [50]. This ex-
periment has already triggered some theoretical activity [26,51,52].
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2 Full Counting Statistics

The fundamental quantity of interest in quantum transport is the probability
distribution

Pt0(N1, N2, . . . , NM ) ≡ P (N) , (1)

which denotes for a M -terminal conductor the probability that during a cer-
tain period of time t0 N1 charges enter through terminal 1, N2 charges enter
through terminal 2, . . ., and NM charges enter through terminal M (negative Ni

correspond to charges leaving the respective terminal). The same information is
contained in the cumulant generating function (CGF), defined by

S(χ) = ln
[∑

N
eiNχP (N)

]
, (2)

where we introduced the vector of counting fields χ = (χ1, χ2, . . . , χN ). The
normalization condition requires

∑
N P (N) = 1 ↔ S(χ = 0) = 0.

2.1 Charge Conservation

We are interested in the long-time limit of the charge counting statistics, which
means that no extra charges remain inside the conductor after the counting
interval. If we count only the total number of transferred charges, we simply
have to consider P (N) =

∑
N δ∑ Nα,NP (χ), or, equivalently, to put all counting

fields equal S(χ1 = χ, χ2 = χ, . . . , χN = χ). Charge conservation now means
that S(χ1 = χ, χ2 = χ, . . . , χN = χ) = 0. As a consequence the CGF depends
only on differences between counting fields. This has the direct interpretation,
that a difference χα −χβ is related to a charge transfer between terminal α and
β. In general, this means that we need only M − 1 counting fields to describe a
M -terminal structure. If one of the counting fields, e. g. χM , has been eliminated,
the charge transfer into terminal M can be restored from the CGF, in which all
other χα are equal χα − χM . In the special case of a two-terminal device, the
CGF depends only on χ ≡ χ1−χ2. We denote this below with S(χ). Later we will
see that the CGF’s are in general periodic functions of χ, i. e. S(χ+2π) = S(χ).
This ensures that the total charge transfered is an integer multiple of the electron
charge e, which makes sense, since we are talking about electron transport and
want to neglect transient effects.

However, the interesting question what the charge of an elementary event is,
can be answered by FCS. Suppose the a CGF has the property S(χ+ 2π/n) =
S(χ). Direct calculation shows that

P (Q) =
∫
dχ

2π
e−iNχ+S(χ) =

{
Pn(Q/n) , (Q mod n) = 0
0 , (Q mod n) 
= 0 , (3)

where Pn(N) is the distribution Sn(χ) = S(χ/n). The probability distribu-
tion vanishes for all N which are not multiples of n, thus the elementary charge
transfer is in units of ne, where e is the electron charge. This has interesting con-
sequences in the context of superconductivity, in which multiple charge transfers
can occur [23,47,48], or for fractional charge transfer [25].
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2.2 Correlations

One commonly addressed question is, if two different events (say the charges
transfered into terminals α and β) are independent or not. For independent
events the probability distributions are separable and we find that 〈Nk

αN
l
β〉 =

〈Nk
α〉〈N l

β〉. In terms of the CGF this means that the CGF is the sum of two
terms: one which depends only on χα and a second one, which depends only on
χβ . On the contrary, if the CGF can not be written as such a sum, the charge
transfers in terminals α and β are correlated.

2.3 Special Distributions (Two Terminals)

If the elementary events are uncorrelated, the probability distribution is Poisso-
nian. With the average number of events is N̄ we have

PPoisson =
N̄

N !
e−N̄ ↔ S(χ) = N̄

(
eiχ − 1

)
. (4)

In the context of electron transport we encounter this distribution mostly for
tunnel junctions with an almost negligible transmission probability at low tem-
peratures. Here N̄ = GTV t0/e is simply related to the voltage bias and the
tunnel conductance.

As second example we consider the binomial (or Bernoulli) distribution. This
is obtained if an event occurs with a probability T and the number of tries is
fixed to N0:

Pbinomal =
(
N0

N

)
TN (1 − T )N0−N ↔ S(χ) = N0 ln

[
1 + T

(
eiχ − 1

)]
. (5)

In some sense this is the most fundamental distribution in quantum transport:
it gives the statistics of a voltage biased single channel quantum conductor if we
identify N0 = eV t0/h.

2.4 Special Distributions (Many Terminals)

For uncorrelated processes the CGF takes the simple form

S(χ) =
∑

α,β

N̄α,β

(
ei(χα−χβ) − 1

)
. (6)

The resulting distribution is just the product of Poisson distributions, taking
into account total charge conservation. An important example is a multinomial
distribution for N0 independent attempts, which can have different outcomes
with probabilities Tα. It has the form

S(χ) = N0 ln

[

1 +
∑

α

Tα

(
eiχα − 1

)
]

. (7)
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3 Theoretical Approach to Full Counting Statistics

3.1 General Theory

We will follow here the approach to FCS using the Green’s function technique [8].
Quantum-mechanically we define the cumulant generating function by [8–10,25]

eS(χ) = 〈TKe
−i 1

2e

∫
CK

dtχ(t)I(t)〉 . (8)

Here, TK denotes time ordering along the Keldysh-contour CK , depicted in
Fig. 1. The time-dependent field χ(t) is defined as ±χ for t ∈ C1(2), i.e. χ(t)
changes sign between the upper and the lower branch of CK . Î(t) is the usual
operator of the current through a certain cross section. Expansion in the counting
field yields the cumulants. In the second order we find the 2nd cumulant as

C2(t0) =
∫ t0

0
dt

∫ t0

0
dt′
〈
δÎ(t)δÎ(t′)

〉
. (9)

Higher cumulants yield more complicated expressions.

t0

CK

C2

C1

H (t)2

H (t)1

tt=0

Fig. 1. Keldysh time-ordering contour

3.2 Current Correlation Functions

The cumulants Cn(t0) are directly related to experimentally accessible quanti-
ties like current noise or the third cumulant of the current fluctuations. Let us
demonstrate the relation for the low-frequency current noise, defined by

SI = 2∆f
∫ ∞

−∞
dτ
〈
δÎ(τ)δÎ(0)

〉
, (10)

where δÎ(τ) = Î(τ) − 〈Î〉 and ∆f = fmax − fmin is the frequency band width,
in which the noise is measured. The factor of 2 enters here to conform to the
review article [3]. We now transform in (9) the integration variables from t, t′

to T = (t + t′)/2, τ = t − t′. In the limit t0 ≡ (∆f)−1 much larger than the
correlation time of current-fluctuations, the integral over T can be evaluated
and we obtain from (9) the desired result SI/2. Similar arguments hold for
higher cumulants, for which the expression corresponding to (9) are less trivial,
however. In [49] it was noted that C3 depends in an quite unusual way on the
frequency band measured, i.e. it is proportional to 2fmax − fmin, which made it
possible to prove experimentally that the third cumulant is actually measured.
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3.3 Keldysh-Green’s Functions

So far we have formally defined the CGF quantum mechanically. The relation
to standard quantum-field theory methods is made in the following way. We
introduce the standard Green’s function [53] in the presence of a time-dependent
Hamiltonian

Hc(t) = H0 +
1
2e
χ(t)Î , (11)

where the time-dependence is only in the ‘counting’ field χ(t). The counting field
couples to the operator Î of the current through a cross section, which intersects
the conductor entirely. The single-particle operators corresponding to H0 and I
are denoted by h0 and j.

Using the matrix notation for the Keldysh-Green’s functions, we arrive at
the equation of motion

[
i
∂

∂t
− ĥ0 − χ

2e
τ̄3ĵc

]
Ǧ(t, t′;χ) = δ(t− t′) . (12)

Here, τ̄3 denotes the third Pauli matrix in the Keldysh space and is a result of
the unusual time-dependence of the counting field. The relation of the Green’s
function (12) to the CGF (8) is obtained from a diagrammatic expansion in χ
(the calculation is formally equivalent to the calculation of the thermodynamic
potential in an external field, see e. g. [54]). One obtains the relation [8]

∂S(χ)
∂χ

=
it0
e

Tr
[
τ̄3ĵǦ(t, t;χ)

]
≡ it0

e
I(χ) , (13)

where we have restricted us to a static situation, for which Ǧ(t, t) is independent
of time. Note, that the counting current I(χ) should not be confused with the
standard electrical current, which is actually given by Iel = I(0). Rather, I(χ)
contains (via an expansion in χ) all current-correlators at once. It nevertheless
resembles a current in the usual sense. E. g., it follows from (12) that the counting
current is conserved.

3.4 A Simplification

In a typical mesoscopic transport problem we can access the full counting sta-
tistics based on the separation into terminals (or reservoirs) and a scattering
region. Terminals provide boundary conditions to Green’s function far away
from the scattering region. These are usually determined by external current or
voltage sources and include material properties like superconductivity. Let us
now take the following parameterization of the current operator in (12)

ĵ(x) = (∇F (x)) lim
x→x′

ie

2m
(∇x − ∇x′) σ̂3 . (14)

F (x) is chosen such that it changes from 0 to 1 across a cross section C, which
intersects the terminal, but is of arbitrary shape. Here we have introduced a
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matrix σ̂3 in the current operator, occurring e. g. in the context of superconduc-
tivity. We assume that the change from 0 to 1 should occur on a length scale Λ,
for which we assume λF � Λ � limp, ξ0 (Fermi wave length λF , impurity mean
free path limp, and coherence length ξ0 = vF /2∆). With this assumption we can
reduce (12) inside the terminal to its quasiclassical version (see [53])

vF ∇ǧ(x,vF , t, t
′, χ) =

[
−iχ

2
(∇F (x))vF τ̌K , ǧ(x,vF , t, t

′, χ)
]
. (15)

Here τ̌K = τ̄3σ̂3 is the matrix of the current operator and ǧ obeys the norma-
lization condition ǧ2 = 1. Other terms can be neglected due to the assumptions
we have made for Λ. The counting field can then be eliminated by the gauge-like
transformation

ǧ(x,vF , t, t
′, χ) = e−iχF (x)τ̌K/2ǧ(x,vF , t, t

′, 0)eiχF (x)τ̌K/2 . (16)

We assume now that the terminal is a diffusive metal of negligible resistance.
Then the Green’s functions are constant in space (except in the vicinity of the
cross section C) and isotropic in momentum space. Applying the diffusive appro-
ximation [53] in the terminal leads to a transformed terminal Green’s function

Ǧ(χ) = e−iχτ̌K/2Ǧ(0)eiχτ̌K/2 , (17)

on the right of the cross section C (where F (x) = 1) with respect to the case
without counting field. Consequently, the counting field is entirely incorporated
into a modified boundary condition imposed by the terminal onto the mesoscopic
system.

3.5 Summary of the Theoretical Approach

This concludes the theoretical approach to counting statistics of mesoscopic
transport. Let us briefly summarize the scheme to follow. The FCS can be ob-
tained by a slight extension of the usual Keldysh-Green’s function approach,
which is widely employed to treat quantum transport problems. Making use of
the separation of the mesoscopic structure into terminals and a scattering re-
gion, the formalism boils down to a very powerful, but nevertheless simple rule:
we have to apply the counting rotation (17) to a terminal, thus providing new
boundary conditions (now depending on the counting field χ) to the scattering
problem. We then proceed ‘as usual’ and calculate the current in the terminal,
which again depends on χ. Finally the counting statistics is obtained from (13).

4 Two-Terminal Contacts

4.1 Tunnel Contact

To illustrate the theoretical method we first calculate the counting statistics of
a tunnel junction. As usual the system is described by a tunnel Hamiltonian
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H = H1 + H2 + HT , where H1(2) describe the left(right) terminal and HT

describes the tunneling. The current is calculated in second order in the tunneling
amplitudes and we obtain I(χ) = GT

8e

∫
dETr

(
τ̌K

[
Ǧ1(χ), Ǧ2

])
, where GT is the

conductance of the tunnel junction and we have included the counting field in
Ǧ1. The CGF is (using (∂/∂χ)G1(χ) = (i/2)

[
τ̌K , Ǧ1(χ)

]
)

S(χ) = i
t0
e

∫ χ

0
dχ′I(χ′) =

GT t0
4e2

∫
dETr

{
Ǧ1(χ), Ǧ2

}
, (18)

which is the general expression for the FCS of a tunnel junction. We use the
pseudo-unitarity τ̌2

K = 1̌ to write

S(χ) = N12(eiχ − 1) +N21(e−iχ − 1) , (19)

where Nij = (t0GT /16e2)
∫
dETr

[
(1 + τ̌K)Ǧi(1 − τ̌K)Ǧj

]
denotes the average

number of charges tunneling from i to j. The statistics is therefore a bidirec-
tional Poisson distribution [25]. It is easy to see that the cumulants are Cn =
N12 +(−1)nN21. If either N21 = 0 or N12 = 0 we obtain the Schottky limit. Fur-
thermore, in equilibrium N12 = N21 and the FCS is (2GT kBTt0/e

2)(cos(χ)−1),
which is non-Gaussian, remarkably.

4.2 General CGF for Quantum Contacts

Using the method presented in the previous section, we can find the counting
statistics for all conductors, which are characterized by a set of transmission
coefficients {Tn}. Nazarov has shown that the transport properties of such a
contact are described by a matrix current [55]

Ǐ12 = −e2

π

∑

n

2Tn

[
Ǧ1, Ǧ2

]

4 + Tn

(
{Ǧ1, Ǧ2} − 2

) . (20)

Here, Ǧ1(2) denote the matrix Green’s functions on the left and the right of the
contact. We should emphasize that the matrix form of (20) is crucial to obtain
the FCS, since it is valid for any matrix structure of the Green’s functions. The
scalar current is obtained from the matrix current by

I12 =
1
4e

∫
dETrτ̌K Ǐ12 . (21)

To find the FCS, we apply the counting rotation (17) to terminal 1, i. e. Ǧ1
becomes χ-dependent. It turns out that the CGF can then be found generally
from the relations (13), (20), and (21). To integrate (13) with respect to χ, we
need the relations i(∂/∂χ)Ǧ1(χ) = [τ̌K , Ǧ1(χ)] and tr[Ǧ1(χ), {Ǧ1(χ), Ǧ2}n] = 0.
We find [9]

S(χ) =
t0
2π

∑

n

∫
dETr ln

[
1 +

Tn

4
(
{Ǧ1(χ), Ǧ2} − 2

)
]
. (22)
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Table 1. Characteristic functions of some generic conductors. The transmission ei-
genvalue densities are normalized to G/GQ, where GQ = 2e2/h is the quantum con-
ductance. The third column displays the CGF-density, which determines the CGF via
S(χ) = (t0G/4eh)

∫
dEtrš({Ǧ1(χ), Ǧ2}/2)

ρ(T )[G/GQ] š(Λ)
Single channel δ(T − T1) ln(1 − T1(Λ − 1)/2)

Diffusive connector
1
2

1
T

√
1 − T

1
4

arcosh2(Λ)

Dirty interface
1
π

1
T 3/2

√
1 − T

√
2(1 + Λ)

Chaotic cavity
2
π

1√
T

√
1 − T

4 ln
(

2 +
√

2(1 + Λ)
)

This is a very important result. It shows that the counting statistics of a
large class of constrictions can be cast in a common form, independent of the
contact types.

Note, that (22) is just the sum over CGF’s of all eigenchannels. Thus, we
can obtain the CGF’s of all constrictions from a known transmission eigenvalue
density. These are known for a number of generic contacts (see e.g. [56] and
Table 1), can be determined numerically, or can be taken from experiment.
Below we will discuss several illustrative examples for single channel contacts.

4.3 Normal Contacts

Consider first a single channel with transmission T between two normal reser-
voirs. They are characterized by occupation factors f1(2) = [exp((E − µ1(2))/
kBTe) + 1]−1 (Te is the temperature). We obtain the result [2,6] (see Appendix)

S(χ) =
2t0
h

∫
dE ln

[
1 + T12(E)

(
eiχ − 1

)
+ T21(E)

(
e−iχ − 1

)]
. (23)

Here, we introduced the probabilities T12 = Tf1(E) (1 − f2(E)) for a tunneling
event from 1 to 2 and T21(E) for the reverse process. We see that the FCS (for
each energy) is a trinomial of an electron going from left to right, from right to
left, or no scattering at all. The counting factors e±iχ − 1 thus correspond to
single charge transfers from 1 to 2 (2 to 1).

At zero temperature and µ1 − µ2 = eV ≥ 0 the argument of the energy
integral is constant in the interval µ1 < E < µ2 and we obtain the binomial
form S(χ) = 2et0|V |

h ln
[
1 + T

(
eiχ − 1

)]
. Note that for reverse bias µ2 > µ1 the

CGF has the same form, but with a counting factor e−iχ − 1. The prefactor
denotes the number of attempts M = et0V/h to transfer an electron 1. If the
transmission probability is unity the FCS is non-zero only for N = M , which

1The non-integer values of M(t0) occur due to the quasiclassical approximation [6].
A more careful treatment reveals that M itself is described by a probability distribution.
For large M the difference is negligible.
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therefore constitutes the maximal number of electrons occupying an energy strip
eV that can be sent through one (spin-degenerate) channel in a time interval t0.
In equilibrium it follows from (23) that the counting statistics is [57]

S(χ) = −2t0kBTel

h
arcsin2

(√
T sin

χ

2

)
. (24)

The fluctuations are non-Gaussian, except for T = 1, when S(χ) = − t0kBTel

h χ2.

4.4 SN-Contact

The FCS of a contact between a superconductor and a normal metal also fol-
lows from the general expression (22). Using the Green’s functions given in the
Appendix we find the result [23]

S(χ) =
t0
2π

∑

n

∫
dE ln

[

1 +
2∑

q=−2

Anq(E)
(
eiqχ − 1

)
]

. (25)

The coefficients Anq(E) are related to a charge transfer of q×e. For example,
a term exp(2iχ) − 1 corresponds just to an Andreev reflection process, in which
two charges are transfered simultaneously. Explicit expressions for the various
coefficients are given in [23,58]. The most interesting regime is that of pure
Andreev reflection: eV, kBT � ∆. Here, we obtain

S(χ) =
t0
h

∫
dE ln [1 + RAf+f−

(
ei2χ − 1

)

+ RA(1 − f+)(1 − f−))
(
e−i2χ − 1

)]
, (26)

where RA = T 2/(2 − T )2 is just the Andreev reflection probability and f± =
f(±E) denotes the occupation with electrons above(below) the chemical poten-
tial of the superconductor. For low temperatures kBTe � eV � ∆, the CGF
becomes

S(χ) =
2et0|V |
h

ln
[
1 +RA

(
ei2χ − 1

)]
. (27)

The CGF is now π-periodic, which according to Sect. 2 reflects that the
charge transfer of an elementary event is now 2e, a consequence of Andreev re-
flection. Quite remarkably, the statistics is again a simple binomial distribution.
In equilibrium, we can adapt the result from 24 to find

S(χ) = −2t0kBTel

h
arcsin2

(√
RA sinχ

)
(for χ ∈ [−π/2, π/2]) . (28)

The counting statistics is also non-Gaussian, except for RA = 1.
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4.5 Superconducting Contact

Now we turn to a slightly more involved problem: a contact between two super-
conductors biased at a finite voltage V . For eV < 2∆ the transport is dominated
by multiple Andreev reflections (MAR). The microscopic analysis of the aver-
age current and the shot noise calculations suggest that the current at subgap
energies proceeds in “giant” shots, with an effective charge q ∼ e(1 + 2∆/|eV |).
However, the question of size of the charge transfered in an elementary event can
only be rigorously resolved by the FCS. The answer was given by Cuevas and the
author [47] based on a microscopic Green’s function approach. Independently,
Johansson, Samuelsson and Ingerman [48] arrived at the same conclusion using
a different method.

Now, what would we like to have? In Sect. 2 we have discussed that one
can speak of multiple charge transfers if the CGF allows an interpretation in
terms of elementary events, which are described by counting factors einχ − 1,
where n denotes the charge transfered in the process. How can we ever hope to
obtain this from the general formula (22)? We have to calculate the determinant
of a 4×4-matrix, which can give only factors of the type ei2χ or even smaller
charges. The answer to this puzzle is that we have to re-interpret the matrix
structure in (22), since the Green’s functions of superconductors at a finite bias
voltage are essentially non-local in energy. The general result for the CGF can
be written as S(χ) = Tr ln Q̌, where Tr=

∫ t0
0 dttr and Q̌(t) = 1 + (T/4)({Ǧ1

⊗,
Ǧ2}−2)(t, t). Here Ǧ1⊗Ǧ2(t, t′) =

∫
dt′′Ǧ1(t, t′′Ǧ2(t′′, t′). Let us set the chemical

potential of the right electrode to zero and represent the Green’s functions by
Ǧ1(t, t′) = eieV tτ̄3ǦS(t − t′)e−ieV t′τ̄3 and Ǧ2(t, t′) = ǦS(t − t′). Here, we have
not included the dc part of the phase, since it can be shown that it drops from
the expression of the dc FCS at finite bias. The Fourier transform leads to
a representation of the form Ǧ(E,E′) =

∑
n Ǧ0,n(E)δ(E − E′ + neV ), where

n = 0,±2. Restricting the fundamental energy interval to E − E′ ∈ [0, eV ]
we can represent the convolution as matrix product, i.e. (G1 ⊗ G2)(E,E′) →
(Ǧ1Ǧ2)n,m(E,E′) =

∑
k(G1)n,k(E,E′)(G2)k,m(E,E′). The trace in this new

representation is written as
∫ eV

0 dE
∑

n Tr ln
(
Q̌
)
nn

. In this way, the functional
convolution is reduced to matrix algebra for the infinite-dimensional matrix Q̌.
From these arguments it is clear that the statistics is a multinomial distribution
of multiple charge transfers:

S(χ) =
t0
h

∫ eV

0
dE ln

[

1 +
∞∑

n=−∞
Pn(E, V )

(
einχ − 1

)
]

. (29)

General expressions for the probabilities P (E, V ) have been derived in [47].
Here, we will pursue a different path and study a toy model. Let us neglect all

set fR,A(|E| < ∆) = 1, gR(A)(|E| > ∆) = ±1, and equal to zero otherwise. Phy-
sically, this means that we neglect Andreev reflections above the gap and replace
the quasi-particle density of states by a constant |E| > ∆. This simplifies the
calculation a lot, since the matrix trace now becomes finite. Let us for example
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consider a voltage eV = 2∆/4. In that case, we consider the determinant of the
matrix

det









1 −
√
T

2









Q̂−(χ) 1
1 0 e−iχτ̂3

eiχτ̂3 0 1
1 0 e−iχτ̂3

eiχτ̂3 Q̂+
















, (30)

where Q±(χ) describe quasi-particle emission (injection) and off-diagonal pairs
e±χ are associated with Andreev reflection. Evaluating the determinant we find
S(χ) = ∆t0

2h ln
[
1 + P5

(
einχ − 1

)]
, where P5 = T 5/(16 − 20T + 5T 2)2. This ex-

pression describes binomial transfers of 5 charges with probability P5. For general
subharmonic voltages 2∆/(n− 1) we find

S(χ) =
2∆t0

(n− 1)h
ln
[
1 + Pn

(
einχ − 1

)]
, (31)

where the probabilities are given by

P2 = T 2

(2−T )2 , P3 = T 3

(4−3T )2 , P4 = T 4

(8−8T+T 2)2 , P5 = T 5

(16−20T+5T 2)2

P6 = T 6

(2−T )2(16−16T+T 2)2 , P7 = T 7

(64−112T+56T 2−7T 3)2 .
(32)

Note the limiting cases of these probabilities Pn ∼ Tn/4n−1 for T � 1 and
Pn = 1 for T → 1. We conclude this section by saying that the general results
for the CGF [47] allow for a fast and efficient calculation of all dc-transport
properties of contacts between superconductors (which may contain magnetic
impurities, phonon broadening or other imperfections).

5 Quantum Noise in Diffusive SN-Structures

In this section, we illustrate a further advantage of the Keldysh-Green’s func-
tions approach to counting statistics. We consider a normal metallic diffusive
wire connected on one end to a normal metal reservoir and on the other side
to a superconductor. The wire is supposed to have a mean free path l � λF , a
corresponding diffusion coefficient D = vF l/3, and a length L. For eV, kBT � ∆
the transport occurs through Andreev reflection at the interface to the supercon-
ductor. This system shows a quite remarkable property, which is the so-called
reentrance effect of the conductance. The energy difference 2E of electron-hole
pairs leads to a dephasing on a length scale ξE =

√
D/2E. This has the con-

sequence that the (otherwise) normal wire becomes partially superconducting
and the conductance increases with decreasing energy. However, once the cohe-
rence length ξE reaches L the conductance decreases again. Finally for E = 0
the conductance is exactly equal to the conductance in the normal state. This is
the reentrance effect occurring at an energy of the order of the Thouless energy
Ec = �D/L2. In Fig. 2 (left panel, dotted curve) the resulting differential con-
ductance at zero temperature is plotted.
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The transport in this system is described by a matrix diffusion equation for
the Keldysh Green’s functions, the so-called Usadel equation

−D

σ
∇Ǐ =

[
−iEτ̂3, Ǧ

]
, Ǐ = −σǦ∇Ǧ . (33)

In these equations σ = 2e2N0D is the conductivity. The boundary conditions
for this equation are that the Green’s functions in the terminal approach the bulk
solution ǦN or ǦS , respectively. This equation is in general difficult to solve,
even if one is interested in the average current only. However, we can calculate
the noise and the counting statistics using the recipe outlined in Sect. 3 and
obtain the noise in the full parameter range of (33).

Before considering (33) in its full generality, we consider the limiting cases of
low and high energies (compared to Ec). For E = 0 the r.h.s. is absent and the
system is completely analogous to a diffusive connector as discussed in Sect. 4.
From Table 1 and using the eigenvalues (52) we find

S(χ) =
t0G

16e2

∫
dEarcosh2

[
2
(
f+f−(e2iχ − 1)

+(1 − f+)(1 − f−)(e−2iχ − 1)
)

− 1
]
. (34)

This result shows, once again, that the charges are transfered in pairs. It is
interesting to compare with the CGF for a diffusive wire between two normal
metals, for which we obtain [5,8]

S(χ) =
t0G

4e2

∫
dEarcosh2

[
2
(
f1(1 − f2)(eiχ − 1)

+f2(1 − f1)(e−iχ − 1)
)

− 1
]
. (35)

We see that the only difference in the CGF between the SN- and the NN-case
is in the counting factors, and a prefactor 1/4. Note, that this coincidence only
occurs for the diffusive connector, but is by no means a general rule. At zero
temperature the results simplify and we find

SSN(χ) =
1
2
SNN(2χ) , SNN(χ) =

t0GV

4e
arcosh2 (2eiχ − 1

)
, (36)

a surprising simple relation between the CGF for the Andreev wire and the
normal diffusive wire. It is easy to see that the cumulants obey the general
relation CSN

n = 2n−1CNN
n . We observe that we can read off the effective charge

from the ratio CSN
n /CNN

n = (qeff/e)n−1 and, indeed, find qeff = 2e. This result
for the effective charge is a special property of the diffusive connector.

At energies large compared to Ec it is also possible to find the CGF for the
Andreev wire in general. Then the proximity effect in the wire is absent and
it turns out [36] that the wire can be effectively mapped on a normal circuit,
consisting of two identical wires in series to which twice the voltage is applied
and twice the counting field. Thus, for E � Ec we obtain SSN (χ) from SNN (χ)
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Fig. 2. Noise in diffusive SN-systems. Left panel a): the differential conductance and the
noise show a reentrant behavior. The effective charge, defined as qeff(E) = (3/2)dS/dI
reveals that the correlated Andreev pair transport suppresses the noise below the un-
correlated Boltzmann-Langevin result 2e. Right panels b) and c): Effective charge of
the Andreev interferometer shown in the inset (realized experimentally in [35]). The
upper panel b) shows the theoretical predictions and the lower panel c) the experimen-
tal results. The theoretical results contain no fitting parameter (the Thouless energy
Ec = 30 µeV was extracted from the sample geometry and the experimental tempe-
rature of 43 mK was included in the calculation). Therefore, it is reasonable that the
deviations between experimental and theoretical results come from possible heating
effects in the experiment, which are not accounted for in the theoretical calculation

by the replacement χ → 2χ and G → G/2, which exactly brings us to (refeq:cgf-
diffusive-andreev) and shows that the counting statistics is again the same in
the incoherent limit.

The full quantum-mechanical calculation of the energy-dependent shot noise
can be performed on the basis of the approach of Sect. 3 [10]. We expand up
to linear order in χ, i.e. Ǧ(χ) = Ǧ0 − i(χ/2)Ǧ1 and Ǐ(χ) = Ǐ0 − i(χ/2)Ǐ1.
Substituting in (33) we find

D

σ

∂

∂x
Ǐ1 =

[
−iEτ̄3 , Ǧ1

]
, Ǐ1 = −σ

(
Ǧ0

∂

∂x
Ǧ1 + Ǧ1

∂

∂x
Ǧ0

)
. (37)

The boundary conditions at the reservoirs read Ǧ1(0) =
[
τ̌K, ǦL

]
at the left

end and Ǧ1(L) = 0 at the right end. Finally the noise is SI = −e
∫
dETrτ̌KǏ1(x).

By taking the trace of (37) multiplied with τ̌K it follows that it does not matter,
where the noise is evaluated, as it should be. From these equations the genera-
lization of the Boltzmann-Langevin equation to superconductors can be derived
[59], which allows for a faster numerical solution. The results for the energy de-
pendent noise is shown in the left panel of Fig. 2. A direct comparison of the
differential shot noise and the differential conductance (for zero temperature)
shows the difference in the energy dependence. The effective charge defined as
qeff = (3/2)dS/dI displays the clear deviation of the quantum noise from the
Boltzmann-Langevin result of 2e. At energies below the Thouless energy Ec the
effective charge is suppressed below 2e. This shows that the correlated Andreev
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pair transport suppresses the noise below the uncorrelated Boltzmann-Langevin
result.

To probe the pair correlations in diffusive superconductor-normal metal-
heterostructures experimentally it is most convenient to use an Andreev inter-
ferometer. An example is shown in the left part of Fig. 2. A diffusive wire connec-
ted to a normal terminal is split into two parts, which are connected to two dif-
ferent points of a superconducting terminal. By passing a magnetic flux through
the loop one can effectively vary the phase difference between the two connections
to the superconductor. Such a structure has been experimentally realized by the
Yale group [35]. In Fig. 2 we present a direct comparison between our theoretical
predictions and the experimentally obtained effective charge. Note, that we have
included the experimental temperature in the theoretical modeling. The finite
temperature explains the strong decrease of the effective charge in the regime
|eV | ≤ kBT , where the noise is fixed by the fluctuation-dissipation theorem.
The disagreement between theory and experiment in this regime stems solely
from differences in the measured temperature-dependent conductance from the
theoretical prediction. We attribute this to heating effects. The qualitative ag-
reement in the shot-noise regime |eV | ≥ kBT is satisfactory, if one takes into
account, that we have no free parameters for the theoretical calculation. Both,
experiment and theory show a suppression of the effective charge for some fi-
nite energy, which is of the order of the Thouless energy and depends on flux
in a qualitative similar manner. Remarkably for half-integer flux the effective
charge is completely flat, in contrast to what one would expect from circuit ar-
guments based on the conductance distribution in the fork geometry. Currently
we have no explanation for this behavior, and therefore more work is needed in
this direction.

6 Multi-terminal Circuits

In circuits with more than two terminals it is of particular interest to study non-
local correlations of currents in different terminals. For that purpose we need a
slight extension of the theoretical approach of Sect. 3, suitable for multi-terminal
circuits. We will now introduce this method.

6.1 Circuit Theory

To study transport in general mesoscopic multi-terminal structures the so-called
circuit theory for quantum transport was developed by Nazarov [55,60]. Its main
idea, borrowed from Kirchhoff’s classical circuit theory, is to represent a mesosco-
pic device by discrete elements, which resemble the known elements of electrical
transport. We briefly repeat the essentials of the circuit theory. Topologically,
one distinguishes three elements: terminals, nodes and connectors. Terminals are
the connections to the external voltage or current sources and provide boundary
conditions, specifying externally applied voltages, currents or phase differences
in the case of superconductors. The actual circuit is represented by a network
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of nodes and connectors, the first determining the approximate layout and the
second describing the connections between different nodes, respectively.

To describe quantum effects it is necessary to represent the variables de-
scribing a node by matrix Green’s function Ǧ, which can be either Nambu
or Keldysh matrices, or a combination thereof. Consequently, we describe the
current through a connector by a matrix current Ǐ, which relates the fluxes
of all elements of Ǧ on neighboring nodes. The current has been derived by
Nazarov [55] and is given by (20) for a connector, characterized by a set of
transmission coefficients {Tn}. Note that the electrical current is obtained from
I12 = 1

4e

∫
dETrτ̌K Ǐ12. The boundary conditions are given in terms of fixed ma-

trix Green’s functions Ǧi, which are determined by the applied potential, the
temperature, the type of lead, and a counting field χi.

Once the network is determined and all connectors are specified, the transport
properties can be found by means of the following circuit rules. We associate an
(unknown) Green’s function Ǧj to each node j. The two rules are

1. Ǧ2
j = 1̌ for the Green’s functions of all internal nodes j.

2. The total matrix current in a node is conserved:
∑

i Ǐij = 0, where the sum
goes over all nodes or terminals connected to node j and each matrix current
is given by (20).

Finally, the observable currents into the terminals are given by Ii =
∑

j Iij ,
where the sum runs over all nodes connected to the terminal i. To obtain the
counting statistics, we finally integrate all currents Ii(χ) = (∂/∂χi)S(χ) to find
the CGF S(χ).

6.2 Multi-tunnel Junction Structure

A general expression of S(χ) can be obtained for a system of an arbitrary number
of terminals connected to one common node by tunnel contacts, see Fig. 3 [38,12].
At the same time it nicely demonstrates the application of the circuit theory
rules, presented above. Let us denote the unknown Green’s function of the central
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Fig. 3. Multi-tunnel junction structure: a) general setup with K terminals connected
to a common node. b) beam splitter setup in which terminal 3 is either a normal metal
or a superconductor
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node by Ǧc(χ). The matrix current from a terminal α (α = 1, . . . ,K) into the
central node is given by the relation

Ǐα(χ) =
gα

2
[
Ǧc(χ), Ǧα(χα)

]
, (38)

where gα = GQ

∑
n Tn is the conductance of the respective tunnel junction,

for which we have assumed that all Tn � 1 and gα � GQ to avoid Coulomb
blockade. The Green’s function of the central node is determined by matrix
current conservation, reading

∑K
α=1 Ǐα = [

∑K
α=1 gαǦα, Ǧc]/2 = 0. Employing

the normalization condition Ǧ2
c = 1, the solution is

Ǧc(χ) =
∑K

α=1 gαǦα(χα)
√∑K

α,β=1 gαgβ

{
Ǧα(χα), Ǧβ(χβ)

} . (39)

To find the cumulant-generating function (CGF) S(χ) we integrate the equa-
tions ∂S(χ)/∂χα = (−it0/4e2)

∫
dETrτ̌K Ǐα(χ) [11]. We obtain

S(χ) =
t0
2e2

∫
dETr

√∑M

α,β=1
gαgβ

{
Ǧα(χα), Ǧβ(χβ)

}
. (40)

This is the general result for an M-terminal geometry in which all terminals
are tunnel-coupled to a common node. It is valid for arbitrary combinations
of normal metal and superconductor, fully accounting for the proximity effect.
Note, that we have dropped the normalization of S(χ) to write the expression
more compact.

6.3 Normal Metals

If all terminals are normal metals, the matrices in (40) are all diagonal and trace
is trivial. We obtain

S(χ) =
t0
2e2

∫
dE

√
g2

Σ +
∑

α�=β

gαgβfα(E)(1 − fβ(E))
(
ei(χα−χβ) − 1

)
, (41)

where fα is the occupation function of terminal α. Here, we introduced the
abbreviation gΣ =

∑N
α=1 gα for the sum of all conductances. We note, that the

statistics is essentially non-Poissonian, despite the fact that we are considering
tunnel junctions.

We now restrict us to two terminals (in which case we have to consider only
one counting field χ = χ1 − χ2). For zero temperature and voltage bias V the
CGF reads then

S(χ) =
t0V

2e

√
g2

Σ + 4g1g2(eiχ − 1) , (42)

the result for a double tunnel junction first obtained by de Jong [13] using
a master equation approach. We obtain as limiting cases for an asymmetric
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junction (either g1 � g2 or g1 � g2) Poisson statistics S(χ) = (t0V g1g2/(g1 +
g2))(exp(iχ) − 1).

Next we consider a three terminal structure, which is voltage biased such
that the mean current Ī3 in lead 3 vanishes (voltage probe) and a transport
current Ī = g1g2/(g1 + g2)V flows between terminals 1 and 2. The CGF is [61]

S(χ) =
t0|V |
2e

(
g2

√
g2

Σ + 4g3g1(e−iχ1 − 1) + 4g1g2(eiχ2−iχ1 − 1)

+g1
√
g2

Σ + 4g3g2(eiχ2 − 1) + 4g1g2(eiχ2−iχ1 − 1)
)
. (43)

It is interesting to note that the presence of the voltage probe makes the CGF
asymmetric under the transformation g1 ↔ g2, whereas the current is symmetric.
In certain limits in which the square roots in (43) can be expanded one is able
to find the counting statistics. E. g. in the strong-coupling limit g3 � (g1 + g2)
we find

S(χ) = N̄
[
e−iχ1 + eiχ2 − 2

]
. (44)

The CGF is simply the sum of two Poisson distributions, demonstrating dra-
stically the effect of the voltage probe. It completely suppresses the correlation
between electrons entering and leaving the central node.

Another interesting geometry is a beam splitter configuration, in which a
voltage bias is applied between one terminal and the other two. We find

SN (χ1, χ2) =
t0|V |
2e

√
g2

Σ + g1g3 (eiχ1 − 1) + g3g2 (eiχ2 − 1) . (45)

In the limit that g1 + g2 and g3 are very different, we can expand the CGF
and find for the CGF S(χ) = N1e

iχ1 +N2e
iχ, i. e. the tunneling processes into

the two terminals are uncorrelated. The corresponding probability distribution
is simply the product of two Poisson distributions.

6.4 SN-Contact

We now consider the case of a double tunnel junction, in which one of the
terminals is superconducting. From the general result (40) and (52) we find
after some algebra

S(χ) =
t0|V |
e
√

2

√

g2
1 + g2

2 +
√

(g2
1 + g2

2)2 + 4g2
1g

2
2(ei2χ − 1) . (46)

Remarkably, the statistics is fundamentally different from the corresponding
normal case (42). Still, the elementary events are transfers of pairs of electrons,
which, however, are correlated in a more complicated way than normal electrons.
If the junction is very asymmetric, the FCS reduces to Poissonian transfer of
electron pairs. This is similar to the effect of decoherence between electrons and
holes for energies of the order of the Thouless energy [34].
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For the beam splitter configuration we are also able to find the FCS analy-
tically. The CGF is [12]

S(χ1, χ2) =
V t0√

2e
× (47)

√

g2
S +

√
g4

S + 4g2
3g

2
1(ei2χ1 − 1) + 4g2

3g
2
2(ei2χ2 − 1) + 8g2

3g1g2(ei(χ1+χ2) − 1),

where we abbreviated g2
S = g2

3 + (g1 + g2)2. From this result we see that the
elementary processes are now double charge transfers to either terminal of a
splitting of a Cooper pair among the two terminals. It is interesting to note,
that, if we assume that g1 +g2 and g3 are very different (but g1 ≈ g2), we obtain
non-separable statistics

S(χ) = N11e
i2χ1 +N22e

i2χ2 +N12e
i(χ1+χ2) . (48)

This expression can not be written as a sum of two independent terms. Furt-
hermore, the last term is positive, which implies that current cross-correlation
S12 = −(2e2/t0)(∂2/∂χ1∂χ2)S(χ1, χ2)|χ1,χ2→0 are positive. Equation (48) pro-
vides a simple explanation for this surprising effect: it is a consequence of inde-
pendence of the different events, contributing to the current. This result, in fact,
holds for a large class of superconducting beam splitters [36,39,62,63].

7 Conclusion

We have tried to give a pedagogical introduction to the field of counting statistics.
Many technical details have been left out, but we have tried to cover the essence
of the derivation and concentrated on looking at concrete examples. For a more
thorough study we recommend the recent book Quantum Noise in Mesoscopic
Physics [4] or the original literature. While a number of aspects have already
been explored, many open questions remain, e. g. experimental strategies to
measure FCS, strongly interacting systems, or spin-dependent problems. For
the future, we expect even more activity in the field and, consequently, even
more interesting results will emerge.
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Appendix

We summarize here the matrix-Green’s function for superconducting and normal
contact, as they were used in the text. The time-dependent Green’s functions are
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expressed by their Fourier transforms Ǧ0(t − t′) =
∫

(dE/2π) e−iE(t−t′)Ǧ0(E).
The energy-dependent Green’s functions in the Keldysh×Nambu-space have the
form

Ǧ(E) =
(

(Ā− R̄)f̄ + R̄ (Ā− R̄)f̄
(Ā− R̄)(1 − f̄) (R̄− Ā)f̄ + Ā

)
, (49)

where the advanced, retarded and occupation Nambu matrices are

Ā(R̄) =
(
gA(R) fA(R)
fA(R) −gA(R)

)
, f̄(E) =

(
f(E) 0

0 f(−E)

)
. (50)

The phase ϕ of the superconducting order parameter as well as the electrical
potential eV enter via the gauge transformation Ǧ(t, t′) = Ǔ(t)Ǧ0(t− t′)Ǔ†(t′).
Here Ǔ(t) = exp [iφ(t)τ̄3/2], where φ(t) = ϕ+ eV t.

In the calculation of the FCS of contacts between normal metals and su-
perconductors we frequently need the eigenvalues of anti-commutators of two
Green’s functions. For two normal metals {ǦN1(χ), ǦN2}/2 is diagonal and the
eigenvalue is

[
1 + 2f1(E) (1 − f2(E))

(
eiχ − 1

)
+ 2f2(E) (1 − f1(E))

(
e−iχ − 1

)]
, (51)

for the electron block and the same expression with E → −E for the ‘hole’-block
in Nambu space.

In the case of Andreev reflection, i. e. for eV, kBTel � ∆, we find for
{ǦN (χ), ǦS}/2 the two eigenvalues

±
√
fN (E)fN (−E) (1 − ei2χ) + (1 − fN (E))(1 − fN (−E)) (1 − e−i2χ). (52)
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Abstract. Spintronics devices rely on spin-dependent transport behavior evoked by
the presence of spin-polarized electrons. Transport through nanostructures, on the
other hand, is dominated by strong Coulomb interaction. We study a model system
in the intersection of both fields, a quantum dot attached to ferromagnetic leads. The
combination of spin-polarization in the leads and strong Coulomb interaction in the
quantum dot gives rise to an exchange field acting on electron spins in the dot. Depen-
ding on the parameter regime, this exchange field is visible in the transport either via
a precession of an accumulated dot spin or via an induced level splitting. We review
the situation for various transport regimes, and discuss two of them in more detail.

1 Introduction

The study of spin-dependent tunneling through quantum dots resides in the
intersection of two active and attractive fields of physics, namely spintronics [1–
3] and transport through nanostructures [4–6]. Both the investigation of spin-
dependent electron transport on the one hand and the study of strong Coulomb
interaction effects in transport through nanostructures on the other hand define
by now well-established research areas. The combination of both concepts wit-
hin one system is, however, a very new field which is still in its early stages. Its
attractiveness originates from the rich physics expected from the combination
of two different paradigms. A suitable model system for a basic study of the
interplay of spin-dependent transport due to spin polarization in ferromagne-
tic electrodes and Coulomb charging effects in nanostructures is provided by a
quantum dot attached to ferromagnetic leads.

1.1 Some Concepts of Spintronics

The field of spin- or magnetoelectronics [1–3] has attracted much interest, for
both its beautiful fundamental physics and its potential applications. A famous
example, which has already proven technological relevance, is the spin valve ba-
sed on either the giant magnetoresistance effect (GMR) in magnetic multilayers

J. König et al., Quantum Dots Attached to Ferromagnetic Leads: Exchange Field, Spin Precession,
and Kondo Effect, Lect. Notes Phys. 658, 145–164 (2005)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. a) Spin valve: a single tunnel junction between two ferromagnets (FM) with
magnetization orientations n̂L and n̂R, respectively. b) Quantum dot. c) Quantum-dot
spin valve: a quantum dot is connected to two ferromagnetic leads (FM)

or the tunnel magnetoresistance (TMR) in magnetic tunnel junctions. In both
cases, the transport properties depend on the relative magnetization orientation
of the magnetic layers or leads involved, an information conveyed by the spin
polarization of the transported electrons. In the case of a single magnetic tunnel
junction, the tunneling current is maximal for parallel alignment of the leads’
magnetization orientations, while it is minimal for antiparallel alignment. This
can be easily understood within a non-interacting-electron picture, as proposed
by Jullière [7]: the tunnel current of electrons with given spin direction is pro-
portional to the product of the corresponding spin-dependent densities of states
in the source and drain electrode, which leads to a reduction of transport in the
case of antiparallel alignment.

This concept has been extended [8] to describe also noncollinear arrange-
ments, as depicted in Fig. 1a, where the magnetization directions of the leads
enclose an arbitrary angle φ. In this situation, the φ-dependent part of the tunne-
ling current is proportional to the overlap of the spinor part of the majority-spin
wave functions in the source and drain electrode, i.e. proportional to cosφ, as it
has been experimentally confirmed recently [9].

In heterostructures that consist of a nonmagnetic metal sandwiched by ferro-
magnetic electrodes, the concept of spin accumulation becomes important. Once
the spin diffusion length is larger than the size of the nonmagnetic region, the in-
formation about the relative orientation of the leads’ magnetization is mediated
through the middle part. In the antiparallel configuration an applied bias voltage
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leads to a pile-up of spin in the nonmagnetic metal, since electrons with one type
of spin (say spin up) are preferentially injected from the source electrode, while
electrons with the other type of spin (spin down) are pulled out from the drain
electrode. This piling up of spin splits the chemical potentials for spin-up and
spin-down electrons in the normal metal such that electrical transport through
the whole device is reduced.

As spin is a vector quantity, transport through a ferromagnetic-nonmagnetic-
ferromagnetic heterostructure can be tuned by manipulating the direction of the
spins in the middle part. The prototype for such a concept is the spin field-effect
transistor proposed by Datta and Das [10]. Spin-polarized electrons are injected
from a ferromagnetic metal into a ballistic conducting channel provided by a two-
dimensional electron gas in a semiconductor heterostructure. Due to the Rashba
effect, the electrons in the semiconductor experience a spin-orbit coupling, whose
strength can be tuned by a gate voltage. This spin-orbit coupling leads to a
rotation of the spins in the conducting channel as they move along towards the
drain electrode. The total transmission through the device, then, depends on the
relative orientation of the rotated spins and the magnetization direction of the
drain electrode.

1.2 Transport Through Nanostructures

Tunneling transport through nanostructures, such as semiconductor quantum
dots (Fig. 1b) or small metallic islands, is strongly affected by Coulomb in-
teraction, and a non-interacting electron picture is no longer applicable [4–6].
Coulomb-blockade phenomena arise at low temperature, such that the corre-
sponding energy scale is smaller than the charging energy, the energy scale for
adding or removing one electron from the dot or island. Small quantum dots
with a size of the order of the Fermi wavelength have a discrete level spectrum.
If the level spacing is large enough, transport through single levels is possible.
This situation defines a simplest but very generic model, the Anderson-impurity
model, for studying Coulomb interaction in nanostructures.

When the level is occupied with one electron since double occupancy is prohi-
bited by charging energy, the dot possesses a local spin. At low temperature and
large dot-lead tunnel-coupling strength, a ground state with complex manybody
correlations forms, which manifests itself in the so-called Kondo effect [11]. The
local spin is screened by the spins of the conduction electrons in the leads, and
accompanied with this, electrical transport through the quantum dot is strongly
enhanced.

1.3 Quantum-Dot Spin Valves

The scheme of a quantum-dot spin valve, a quantum dot attached to ferromagne-
tic leads, is illustrated in Fig. 1c. Successful fabrication of either quantum-dot
systems or magnetic heterostructures has been achieved by a large number of ex-
perimental groups. To attach ferromagnetic electrodes to quantum dots, though,
is quite a challenging task, and only very recently first results have been reported.
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Let us start with metallic single-electron devices. Both spin-dependent tun-
neling and Coulomb blockade have been found in magnetic tunnel junction with
embedded Co clusters [12]. All-ferromagnetic metallic single-electron transistors
have been manufactured, using either single-island [13,14], or multi-island struc-
tures [15,16]. Magnetoresistance of single-electron transistors with a normal me-
tallic island in a cobalt-aluminum-cobalt structure has been measured [17]. In all
these examples, the level spectrum on the island is continuous, and many levels
are involved in transport.

Our focus, however, is on single-level quantum dots. The difficulty lies in
the incompatibility of the usual materials showing ferromagnetism (metals) and
those usually forming quantum dots (semiconductors). There are different stra-
tegies to overcome this problem. One possibility is the use of ferromagnetic
semiconductors (Ga,Mn)As as lead electrodes coupled to, e.g., self-assembled
InAs quantum dots [18]. A very promising approach is to contact an ultrasmall
aluminum nanoparticle, which serves as a quantum dot, to ferromagnetic metal-
lic electrodes. In this way, quantum dots with one magnetic (nickel or cobalt)
and one nonmagnetic (aluminum) electrodes have been fabricated [19]. Another
important system is a magnetic impurity inside the tunneling barrier of ferroma-
gnetic tunnel junction [20]. An alternative route is to use carbon nanotubes as
quantum dots and to place them on metallic contacts. Coulomb-blockade phe-
nomena and even the Kondo effect has been observed in such systems [21,22].
Spin-dependent transport through carbon nanotubes attached to ferromagnetic
electrodes has been investigated in [23,24]. A more challenging scheme is a fer-
romagnetic single-molecule transistor [25], where a single molecule is attached
to ferromagnetic electrodes. To some extent, there is also a relation between the
quantum-dot spin valve and a single magnetic-atom spin on a scanning tunneling
microscope tip. For the latter, precession of the single spin in an external magne-
tic field has been detected in the power spectrum of the tunneling current [26].

This progress on the experimental side has stimulated a number of theoretical
activities [27–40] on spin-dependent transport through either metallic single-
electron transistors or quantum dots.

The motivation for studying quantum-dot spin valves can be formulated from
two different perspectives, depending on from which side one starts to approach
the problem. Coming from the spintronics side, one may ask how the concepts
introduced there, such as spin accumulation and spin manipulation, manifest
themselves in quantum dots, and how the presence of strong Coulomb interaction
gives rise to qualitatively new behavior as compared to non-interacting electron
systems. On the other hand, when starting from Coulomb-interaction effects
in quantum dots, one may ask how the spin-polarization of the leads changes
the picture. As mentioned above, the screening of a local spin on the quantum
dot by the lead-electron spins is crucial for the Kondo effect to develop. This
screening behavior is affected by spin asymmetry introduced due to a finite spin
polarization of the lead. In this case, it is a priori not clear whether a Kondo-
correlated state can still form or not.

To comprise all this in a single question, we ask whether the combination of
strong Coulomb interaction and finite spin-polarization gives rise to qualitatively
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new phenomena that are absent for either non-interacting or unpolarized elec-
trons. The answer is: yes, it does. We predict that single electrons on the quantum
dot experience an exchange field, which effectively acts like a local magnetic field.
The main goal of this paper is to illustrate the origin of this exchange field, its
properties, and its implications on transport. Of course, the latter depends on
the considered transport regime, and the observable consequences can be quite
different. In the present paper, we concentrate on two particular regimes, the
case of weak dot-lead coupling but noncollinear magnetization directions and
the case of very strong coupling but collinear configuration. Other limits will
only be commented on shortly, as for these cases work is still in progress and
will be presented elsewhere.

2 The Model

We consider a small quantum dot with one energy level ε participating in trans-
port. The dot is coupled to ferromagnetic leads, see Fig. 1c. The left and right
lead are magnetized along n̂L and n̂R, respectively. The total Hamiltonian is

H = Hdot +HL +HR +HT,L +HT,R . (1)

The first part, Hdot = ε
∑

σ c
†
σcσ + Un↑n↓, describes the dot energy level

plus the charging energy U for double occupation. In the presence of an ex-
ternal magnetic field, the energy level experiences a Zeeman splitting, i.e., be-
comes spin-dependent. The leads are modeled by Hr =

∑
kσ εkσa

†
rkσarkσ with

r = L,R. In the spirit of a Stoner model of ferromagnetism [41], there is a
strong spin asymmetry in the density of states ρrσ(ω) for majority (σ = +) and
minority (σ = −) spins. Throughout all of our calculations presented here, we
approximate the density of states to be energy independent, ρrσ(ω) = ρrσ. Real
ferromagnets will have a structured density of states [42]. This fact, however, will
only modify details of the results and not the main physical picture. The ratio
p = (ρr+ − ρr−)/(ρr+ + ρr−) characterizes the degree of spin polarization in the
leads. For simplicity, we assume here ρL+ = ρR+ ≡ ρ+ and ρL− = ρR− ≡ ρ−.
Nonmagnetic leads are described by p = 0, and p = 1 represents half metallic
leads, which accommodate majority spins only. We emphasize that the magne-
tization directions of leads can differ from each other, enclosing an angle φ.

Tunneling between leads and dot is described by the standard tunneling
Hamiltonian. For the left tunnel barrier we get

HT,L = t
∑

kσ=±

(
a†
Lkσcσ + h.c.

)
, (2)

where c± are the Fermi operators for an electron on the quantum dot with spin
along ±n̂r. For the right barrier, an analogous expression holds. As n̂L may
differ from n̂R, an ambiguity arises in the definition of c±. This is no problem
for collinear, i.e., parallel or antiparallel, configuration of the leads. In this case,
n̂L = ±n̂R provides a natural quantization axis for the dot spin.
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Fig. 2. Choice of the used coordinate system: a) For collinear configuration of the
leads’ magnetization, i.e., parallel (solid arrow for n̂R) or antiparallel (dashed arrow),
the z-axis is along n̂L. In this case, we use the tunneling Hamiltonian in the form of
(2). b) For noncollinear arrangements, the z-axis is perpendicular to both n̂L and n̂R.
Here, the tunneling Hamiltonian in the form of (3) is used. The quantum-dot spin is
always quantized along the z-axis

For noncollinear leads, however, the form (2) of the tunnel Hamiltonian is
no longer useful. To describe the scenario properly, we find it convenient to
quantize the dot spin neither along n̂L nor n̂R, but along the axis perpendicular
to both n̂L and n̂R. To be explicit, we choose the coordinate system defined
by êx = (n̂L + n̂R)/|n̂L + n̂R|, êy = (n̂L − n̂R)/|n̂L − n̂R|, and êz = (n̂R ×
n̂L)/|n̂R × n̂L|, and quantize the dot spin along the z-direction, see Fig. 2. The
tunnel Hamiltonian, then, becomes

HT,L =
t√
2

∑

k

(a†
Lk+, a

†
Lk−)

(
eiφ/4 e−iφ/4

eiφ/4 −e−iφ/4

)(
c↑
c↓

)
+ h.c. , (3)

and HT,R is the same but with L → R and φ → −φ. The special choice of the
coordinate system implies that both up and down spins of the dot are equally-
strongly coupled to the majority and minority spins of the leads. There, are, ho-
wever, phase factors e±iφ/4 are involved, similar to multiply-connected quantum-
dot systems dubbed Aharonov-Bohm interferometers [43]. The two spin direc-
tions ↑ and ↓ in the dot correspond to the quantum dots placed in the two arms
of the Aharonov-Bohm interferometer, and the angle φ plays the role of the
Aharonov-Bohm phase, which measures the total magnetic flux enclosed by the
arms of the interferometer in units of the flux quantum. We note, however, that
our model translates to a very special kind of Aharonov-Bohm interferometer:
the dot in each interferometer arm accommodates only a single level instead of
a doubly-degenerate one, and Coulomb interaction occurs between the two dots,
instead of within each of them.

The two different choices we use for the collinear and noncollinear configura-
tion, in which we use either (2) or (3), respectively, are illustrated in Fig. 2. In
both cases, the tunnel coupling leads to a finite width of the dot level. Its energy
scale is given by Γ =

∑
r Γr with Γr = π|t|2

∑
σ=± ρσ [44].
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3 Exchange Field

As pointed out in the introduction, the qualitative new physics introduced by
the combination of spin-polarized leads and strong Coulomb interaction in the
dot, is the existence of an exchange field acting on electron spins in the dot.
This exchange field is intrinsically present in the model described by the Hamil-
tonian (1) together with the spin-dependent density of states. It is, therefore,
automatically contained in any consistent treatment of the model for a given
transport regime, as we will see in the subsequent sections. Nothing has to be
added by hand. Nevertheless, we find it instructive to derive an explicit analytic
expression by making use of the following heuristic procedure.

Each of the two leads will contribute to the exchange field separately. To
keep the discussion transparent, we consider the effect of one lead only. The
total exchange field is, then, just the sum over both leads. The first step is
to derive an effective Hamiltonian for the subspace of the total Hilbert space
in which the quantum dot is singly occupied. This is the regime of interest,
as far as the exchange field in concerned, since both an empty and a doubly-
occupied dot have zero total spin, and an exchange field would be noneffective.
By taking into account virtual excitations to an empty or doubly-occupied dot
within lowest-order perturbation theory in the tunnel coupling, in analogy to the
Schrieffer-Wolff transformation [11] employed in the context of Kondo physics
for magnetic impurities in nonmagnetic metals, we arrive at an effective spin
model for the dot spin operators S± and Sz (quantized along the magnetization
direction of the considered lead),

Hspin = S+|t|2
∑

kq

(
1

U + ε− εq
+

1
εk − ε

)
a†

rk↓arq↑

+S−|t|2
∑

kq

(
1

U + ε− εk
+

1
εq − ε

)
a†

rq↑ark↓

+Sz|t|2



∑

qq′

1
U + ε− εq′

a†
rq↑arq′↑ −

∑

kk′

1
U + ε− εk′

a†
rk↓ark′↓





−Sz|t|2



∑

qq′

1
εq − ε

arq′↑a
†
rq↑ −

∑

kk′

1
εk − ε

ark′↓a
†
rk↓



 . (4)

Note that the information about the different densities of states for up- and
down-spins is included in the summation over q, q′ (used for spin-up electrons)
and k, k′ (used for spin down), respectively. In addition, there is a term describing
potential scattering, but this does not contribute to the exchange field we are
aiming at.

In a second step we employ in (4) a mean-field approximation for the lead-
electron states, making use of 〈a†

rkσark′σ′〉 = fr(εkσ)δkk′δσσ′ and 〈arkσa
†
rk′σ′〉 =

[1 − fr(εkσ)]δkk′δσσ′ , where fr(ω) is the Fermi function of lead r. The terms
proportional to S± drop out. The resulting effective Hamiltonian, then, reads
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Fig. 3. The exchange field as a function of the level position ε for U/kBT = 10 and
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Heff = −SzBr with the exchange field (for simplicity we include the gyromagne-
tic factor in the definition)

Br =
∫ ′

dω(ρ+ − ρ−)|t|2
(

1 − fr(ω)
ω − ε

+
fr(ω)

ω − ε− U

)
(5)

= −pΓr

π
Re

[
Ψ

(
1
2

+ i
β(ε− µr)

2π

)
− Ψ

(
1
2

+ i
β(ε+ U − µr)

2π

)]
, (6)

where Ψ(x) denotes the digamma function, µr is the electrochemical potential
of lead r, and the prime at the integral sign in (5) symbolizes Cauchy’s princi-
pal value. For illustration, we plot the exchange field as a function of the level
position in Fig. 3.

From the explicit form (6) of the exchange field we derive the following pro-
perties:

(i) It vanishes in the case of a non-interacting quantum dot, U = 0.
(ii) The exchange field is proportional to the degree of spin-polarization p in

the lead. This means that both strong Coulomb interaction and finite spin-
polarization are required to generate the exchange field.

(iii) It depends on the tunnel coupling strength Γ . In the treatment lined out
above, Γ enters linearly as a global prefactor.

(iv) The magnitude and even the sign of the exchange field depends on the level
position ε. In particular, there is a value of ε at which the exchange field
vanishes (in our model with flat density of states this happens at ε− µr =
U/2, i.e., when the total system is particle-hole symmetric).

Furthermore, we notice from (5) that not only electronic states around the
Fermi energy of the lead are involved. Instead, it is rather the full band that
matters. This means that a precise simulation of realistic materials requires a
knowledge of the detailed density of states, to be inserted in the integral in (5).
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This will modify the details of the exchange field such as its precise dependence
on the level position ε.

4 Transport Regimes

After introducing the notion of the exchange field, the question of how it affects
the transport behavior arises immediately. The answer to this question depends
on the transport regime under consideration. In particular, we will identify two
mechanisms by which the exchange field enters. One scenario is the generation of
a level splitting between up and down spins in the quantum dot, with the level
splitting given by the exchange field (6). But this is not the only possibility.
Even in situations where the generated level splitting is negligible, the exchange
field can affect the dot state and, thus, the transport behavior by rotating an
accumulated spin on the dot, which can pile up there in non-equilibrium due to an
applied bias voltage. A complete picture of the various different transport regimes
goes beyond the scope of the present paper. Instead, we will concentrate on two
specific limits, namely weak dot-lead coupling but noncollinear magnetization
in linear response, and strong coupling but collinear configuration of the leads.
For some other regimes, that are currently under investigation, we will only give
some short comments and refer the reader to forthcoming publications.

In the limit of weak dot-lead coupling, Γ � kBT , referred to as sequential-
tunneling regime, transport is dominated by processes of first order in Γ (unless
both ε and ε + U are shifted into the Coulomb-blockade region). First-order
transport probes the state of the quantum dot to zeroth order (since the tun-
neling between dot and leads necessary for transport already trivially involves
a factor Γ ). Therefore, the level splitting generated by the exchange field can-
not be probed by first-order transport. Nevertheless, the exchange field plays a
role via the second of the above mentioned mechanisms. Once a finite spin is
accumulated on the quantum dot, with a direction noncollinear to the exchange
field, the latter will induce a precession of the accumulated spin. For this to hap-
pen, a noncollinear configuration of the leads’ magnetic moments is required, as
otherwise accumulated spin, if any, and exchange field are pointing in the same
direction.

In the Coulomb-blockade regime, sequential tunneling is exponentially sup-
pressed, and transport is dominated by cotunneling, which are second-order pro-
cesses. But also on resonance, second-order corrections become important for
intermediate coupling strengths, Γ ∼ kBT . Second-order transport is affected
by the generated level splitting, and the exchange field plays a role even for a
collinear arrangement of the leads’ magnetization.

A very dramatic signature of the level splitting generated by the exchange
field is predicted for the limit of low temperature and large coupling strength,
kBT ≤ kBTK � Γ , for which the Kondo effect can appear (TK is the Kondo
temperature). Since a finite level splitting, e.g., due to a Zeeman term induced
by an external magnetic field, quickly destroys the Kondo effect, the exchange
field has quite an important, at first glance destructive, consequence. As we will
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see below in more detail, however, by applying an appropriately-tuned external
magnetic field one can compensate for the induces level splitting and, thus,
recover the Kondo effect. For this discussion, we restrict ourselves to collinear
configurations.

4.1 First-Order Transport in Linear Response

Here, we only present the major steps and main results. Details of the calcula-
tions can be found in [30,31]. The first step is to relate the linear conductance
Glin = (∂I/∂V )

∣
∣
V =0 to the Green’s functions of the dot. For first-order trans-

port, we obtain

Glin =
e2

h
Γ

∫
dω

{
ImGret

↓↓ (ω)f ′(ω)

+p sin
φ

2

[

f(ω)
∂G>

↓↑(ω)
∂(eV )

+ [1 − f(ω)]
∂G<

↓↑(ω)
∂(eV )

]}

. (7)

Here, f(ω) is the Fermi function, Gσσ′(ω) are the Fourier transforms of the
usual retarded, greater and lesser Green’s functions. Contributions involving the
Green’s functions G↑↑(ω) and G↑↓(ω) are accounted for in a prefactor 2. Since
Γ already appears explicitly in front of the integral, all Green’s functions are
to be taken to zeroth order in Γ . In this limit, we find −(1/π)ImGret

↓↓ (ω) =
(P 0

0 + P ↓
↓ )δ(ω − ε) + (P ↑

↑ + P d
d )δ(ω − ε− U), G>

↓↑(ω) = 2πiP ↓
↑ δ(ω − ε− U), and

G<
↓↑(ω) = 2πiP ↓

↑ δ(ω − ε), where Pχ
χ′ = 〈|χ′〉〈χ|〉 are elements of the stationary

density matrix (to zeroth order in Γ ) of the quantum-dot subsystem, with χ, χ′ =
0 (empty dot), ↑, ↓ (singly-occupied dot), and d (doubly-occupied dot).

The main task is now to determine the density-matrix elements to zeroth
order in Γ . They contain the information about the average occupation and
spin on the quantum dot. The diagonal matrix elements, Pχ

χ , are nothing but
the probabilities to find the quantum dot in state χ, i.e., the dot is empty with
probability P0 ≡ P 0

0 , singly occupied with P1 ≡ P ↑
↑ + P ↓

↓ , and doubly occupied
with Pd ≡ P d

d . A finite spin can only emerge for single occupancy. The average
spin �S with S = (Sx, Sy, Sz) is related to the matrix elements Pχ

χ′ via Sx =
ReP ↓

↑ , Sy = ImP ↓
↑ , and Sz = (1/2)(P ↑

↑ − P ↓
↓ ). To obtain the density-matrix

elements by using the real-time transport theory developed in [45], we solve a
kinetic equation formulated in Liouville space. The details are found in [30,31].

It is remarkable that on the r.h.s of (7), derivatives of Green’s function with
respect to bias voltage V appear. As a consequence, the linear conductance is
not only determined by equilibrium properties of the quantum dot, but linear
corrections in V are involved as well. This is consistent with the observation
that, in equilibrium, the density matrix is diagonal with the matrix elements
determined by the Boltzmann factors, i.e., the average spin on the quantum dot
vanishes at V = 0 [46]. With applied bias voltage, though, a finite spin can
accumulate. Therefore, to be sensitive to the relative magnetization direction of
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the leads, the linear conductance has to be connected to the differential spin
accumulation (dS/dV )

∣
∣
V =0.

The results we find can be summarized as follows. At finite bias voltage, spin
is accumulated on the dot. Here, we only need its contribution linear in V and
find

∂|S|
∂(eV )

∣
∣
∣
∣
V =0

=
pP1

4kBT
cosα(φ) sin

φ

2
, (8)

where P1 is the equilibrium probability for a singly occupied dot. The spin is
lying in the y-z-plane enclosing an angle α with the y-axis, where

tanα(φ) = − B

Γ [1 − f(ε) + f(ε+ U)]
cos

φ

2
. (9)

In the absence of an exchange field, the accumulated spin is oriented along
n̂L − n̂R, i.e., it has a y-component only, α = 0. The exchange field B, though,
leads to a precession of the spin about the x-axis. The factor 1/Γ [1 − f(ε) +
f(ε + U)] in (9) can be identified as the life time of the dot spin, limited by
tunneling out of the dot electron or by tunneling in of a second electron with
opposite spin. Since both this life time and the exchange field are of first order
in Γ , the angle α acquires a finite value.

The differential spin accumulation dS/d(eV ) in units of kBT is illustrated in
the middle panel of Fig. 4. It is clear that single occupation of the dot is required
for spin accumulation, i.e., the plotted signal is high in the valley between the
two conductance peaks. The lower panel of Fig. 4 shows the evolution of the
rotation angle α as a function of the level energy ε. This angle is large in the
valley between the conductance peaks, getting close to ±π/2. A special point
is ε = −U/2, at which, due to particle-hole symmetry, the exchange interaction
vanishes. As a consequence, α shows a sharp transition from positive to negative
values, accompanied with a peak in the accumulated spin.

The linear conductance is given by

Glin = Glin,max
(

1 − p2 cos2 α(φ) sin2 φ

2

)
. (10)

The conductance is maximal for parallel magnetization, φ = 0. Its value is
Glin,max = (πe2/h)(Γ/kBT )[1 − f(ε + U)]f(ε)[1 − f(ε) + f(ε + U)]/[f(ε) + 1 −
f(ε+ U)]. The upper panel of Fig. 4 depicts the linear conductance for five dif-
ferent values of the angle φ. For parallel magnetization, φ = 0, there are two
conductance peaks located near ε = 0 and ε = −U , respectively. With increasing
angle φ, transport is more and more suppressed due to the spin-valve effect.
However, this suppression is not uniform, as would be in the absence of the
exchange field. In contrast, the spin-valve effect is less pronounced in the valley
between the two peaks, where the rotation angle α is large. A large angle α re-
duces both the magnitude of the accumulated spin, as discussed above, and the
relative angle to the magnetization of the drain electrode. Both enhance trans-
port as compared to the situation without the exchange field. As a consequence,
the two conductance peaks move towards each other with increasing φ.
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Another way to illustrate the influence of the exchange field is to plot the φ-
dependence of the linear conductance, see Fig. 5. For values of the level position
ε at which the rotation angle α is small, ε/kBT = 3 and 1, the φ-dependence of
the conductance is almost harmonic, as it is for single magnetic tunnel junction.
For ε/kBT = −1 and −3, however, the spin-valve effect is strongly reduced, and
conductance is enhanced, except in the regime close to antiparallel magnetiza-
tion, φ = π. The conductance, then, stays almost flat over a broad range, and
then establishes the spin-valve effect only in a small region around φ = π.

4.2 First-Order Transport in Nonlinear Response

A rather complete analysis of first-order transport through quantum-dot spin
valves, which covers both the linear- and nonlinear-response regime is presented
in [31]. There, we derive generalized rate equations for the dot’s occupation and
accumulated spin, which provide the basis of quite an intuitive understanding of
the behavior of the quantum-dot state.
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In the non-linear-response regime, the physics of spin accumulation is more
involved as for linear response. The accumulated spin tends to align anti-parallel
to the drain electrode, leading to a spin blockade, i.e., a stronger spin-valve ef-
fect. This contrasts with the exchange field which, by rotation of the accumulated
spin, tends to weaken the spin-valve effect. By the interplay of these two coun-
tersteering mechanisms, a very pronounced negative differential conductance is
predicted.

4.3 Second-Order Transport

While first-order transport does not probe the spin splitting generated by the
exchange field, second-order transport does. Therefore, in second-order trans-
port, the exchange splitting plays a role even for collinear configuration of the
leads’ magnetizations. For parallel alignment, the exchange field gives rise to
a gate-voltage dependent, finite spin polarization of the dot, n↑ 
= n↓, even at
zero bias. This polarization vanishes (at zero bias) for antiparallel orientation
and symmetric coupling, since, in this case, the total exchange field adds up
to zero. A detailed analysis of this transport regime will be presented in [32],
which includes, among other things, the prediction and explanation of a peculiar
zero-bias behavior for some circumstances.

4.4 The Kondo Effect

A very sensitive probe to the exchange field is provided by the Kondo effect,
which occurs in singly-occupied quantum dots below a characteristic tempera-
ture, kBT ≤ kBTK � Γ . The singly-occupied dot defines a local spin with two
degenerate states, spin up and down. The local spin can be flipped by higher-
order tunneling processes, in which the electron tunnels out of the dot, and
another one with opposite spin enters from one of the leads. By these processes,
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the dot- and the lead-electron spins are coupled to each other. At low tempe-
rature, a highly-correlated state is formed, in which the local spin is totally
screened. This Kondo-correlated state is accompanied with an increased trans-
mission through the dot, and gives rise to a sharp zero-bias anomaly in the
current-voltage characteristics.

How does a finite spin polarization in the leads modify this picture? As it
turns out, there are two mechanisms influencing the Kondo effect. First, the
exchange field lifts the spin degeneracy on the quantum dot. This is analogous
to the situation of a Kondo dot in the presence of an external magnetic field. For
the latter it is well known, that the zero-bias anomaly splits by twice the Zee-
man energy. Due to the same reason, the exchange-field induces a splitting of the
zero-bias anomaly for our model system, but now in the absence of an external
magnetic field. In the presence of an external magnetic field both exchange- and
magnetic-field induced splittings contribute. In particular, for a properly-tuned
magnetic field the level splitting is compensated, and a single zero-bias anomaly
is recovered.

The second mechanism by which the finite spin-polarization influences the
Kondo effect is the screening of the quantum-dot spin. Naturally, both up- and
down-spin electrons in the leads are crucial for the screening. An imbalance
of majority and minority spins in the leads, therefore, weakens the screening
capability. As we will see below, this leads to a reduced Kondo temperature
TK(p), which even vanishes for p = 1.

Recently, the possibility of the Kondo effect in a quantum dot attached to
ferromagnetic electrodes was discussed in a number of publications [33–39], and
it was shown, that the Kondo resonance is split and suppressed in the presence of
ferromagnetic leads [37–39]. It was shown that this splitting can be compensated
by an appropriately tuned external magnetic field to restore the Kondo effect
[37,38], as we discuss in detail below.

In the following, we mainly concentrate on the case of parallel alignment of
the leads’ magnetization. For antiparallel alignment and symmetric coupling to
the left and right lead, the exchange field vanishes (at zero bias voltage), and
the usual Kondo resonance as for nonmagnetic electrodes forms.

Perturbative-Scaling Approach. An analytical access to the problem, which
provides an intuitive picture of the involved physics, is the perturbative-scaling
approach. For detail of the following calculations we refer to [37]. We make use
of the poor man’s scaling technique [47], performed in two stages [48]. In the first
stage, when high-energy degrees of freedom are integrated out, charge fluctua-
tions are the dominant. Afterwards, in the second stage, we map the resulting
model to a Kondo Hamiltonian, and integrate out the degrees of freedom invol-
ving spin fluctuations. As we will see, each of the two stages will account for one
of the two above mentioned different mechanisms by which the spin-polarized
leads influence the Kondo effect, respectively.

The scaling procedure starts at an upper cutoff D0, given by the onsite
repulsion U . Charge fluctuations lead to a renormalization of the level position
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εσ according to the scaling equations

dεσ
d ln(D0/D)

= |t|2ρσ̄ , (11)

where σ̄ is opposite to σ. Since the renormalization is spin dependent, a spin
splitting is generated. In the presence of a magnetic field, this generated spin
splitting simply adds to the initial Zeeman splitting ∆ε. We obtain the solution
∆ε̃ = ε̃↑ − ε̃↓ = −(1/π)pΓ ln(D0/D) +∆ε. The scaling of (11) is terminated [48]
at D̃ ∼ −ε̃. When plugging in D0 = U and D = ε, we recover that the generated
level splitting exactly reflects the zero-temperature limit of the exchange field
(6).

To reach the strong-coupling limit, we tune the external magnetic field Bext
such that the total effective Zeeman splitting vanishes, ∆ε̃ = 0. In the second
stage of Haldane’s procedure [48], spin fluctuations are integrated out. To ac-
complish this, we perform a Schrieffer-Wolff transformation [11] to map the An-
derson model (with renormalized parameters D̃ and ε̃) to a Kondo Hamiltonian,
see (4). Since we are interested in low-energy excitations only, we neglect the
energy dependence of the coupling constants and arrive at

HKondo = J+S
+
∑

rr′kq

a†
rk↓ar′q↑ + J−S− ∑

rr′kq

a†
rq↑ar′k↓

+Sz



Jz↑
∑

rr′qq′
a†

rq↑ar′q′↑ − Jz↓
∑

rr′kk′
a†

rk↓ar′k′↓



 , (12)

plus terms independent of either dot spin or lead electron operators, with J+ =
J− = Jz↑ = Jz↓ = |t|2/|ε̃| ≡ J0 in the large-U limit. Although initially identical,
the three coupling constants J+ = J− ≡ J±, Jz↑, and Jz↓ are renormalized
differently during the second stage of scaling. The scaling equations are

d(ρ±J±)

d ln(D̃/D)
= ρ±J±(ρ↑Jz↑ + ρ↓Jz↓) (13)

d(ρσJzσ)

d ln(D̃/D)
= 2(ρ±J±)2 (14)

with ρ± = √
ρ↑ρ↓, ρσ ≡

∑
r ρrσ. To solve these equations we observe that

(ρ±J±)2 − (ρ↑Jz↑)(ρ↓Jz↓) = 0 and ρ↑Jz↑ − ρ↓Jz↓ = J0p(ρ↑ + ρ↓) is constant as
well. I.e., there is only one independent scaling equation. All coupling constants
reach the stable strong-coupling fixed point J± = Jz↑ = Jz↓ = ∞ at the Kondo
energy scale, D ∼ kBTK . For the parallel configuration, the Kondo temperature
in leading order,

TK(P ) ≈ D̃ exp
{

− 1
(ρ↑ + ρ↓)J0

artanh(p)
p

}
, (15)

depends on the polarization p in the leads. It is maximal for nonmagnetic leads,
p = 0, and vanishes for p → 1.
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The unitary limit for the P configuration can be achieved by tuning the
magnetic field appropriately, as discussed above. In this case, the maximum
conductance through the quantum dot is GP

max,σ = e2/h per spin, i.e., the same
as for nonmagnetic leads.

Numerical Renormalization Group. Although perturbative scaling provides
an instructive insight in the relevant physical mechanisms, it is a approximate
method, and its reliability is, a priori, not clear. The numerical renormalization-
group (NRG) technique [11], on the other hand, is one of the most accurate
methods available to study strongly-correlated systems in the Kondo regime.
Recently, it was adapted to the case of a quantum dot coupled to ferromagnetic
leads [38,39].

The NRG study [38,39] confirms the predictions of the perturbative scaling
analysis. The Kondo resonance is split, as a consequence of the exchange field.
By appropriately tuning an external magnetic field, this splitting can be fully
compensated and the Kondo effect can be restored [38]. Precisely at this field,
the occupancy of the local level is the same for spin up and down, 〈n↑〉 = 〈n↓〉,
a fact that follows from the Friedel sum rule. Moreover, the Kondo effect has
unusual properties such as a strong spin polarization of the Kondo resonance and
for the density of states. Nevertheless, the quantum dot conductance is found to
be the same for each spin channel, G↑ = G↓. Furthermore, by analyzing the spin
spectral function, the Kondo temperature can be determined, and the functional
dependence on p as given by (15) has been confirmed.

More recently, the NRG scheme has been extended to account for structured
densities of states [40]. The generated spin splitting found in this case is found
to coincide with the exchange field defined in (6), when the energy-dependent
density of states is included in the integral.

Nonequilibrium Transport Properties. To get a qualitative understan-
ding of how the exchange field appears in nonlinear transport, we employ an
equations-of-motions scheme with the usual decoupling scheme [49], but gene-
ralized by a self-consistent determination of the level energy to account for the
exchange field in a correct way. We skip all technical details here (they are given
in [37]), and go directly to the discussion of the results.

In Fig. 6 we show the differential conductance as a function of the trans-
port voltage. For nonmagnetic leads, there is a pronounced zero-bias maximum
(Fig. 6a), which splits in the presence of a magnetic field (Fig. 6b). For magnetic
leads and parallel alignment, we find a splitting of the peak in the absence of a
magnetic field (Fig. 6c), which can be tuned away by an appropriate external
magnetic field (Fig. 6d). In the antiparallel configuration, the opposite happens,
no splitting at Bext = 0 (Fig. 6e) but finite splitting at Bext > 0 (Fig. 6f) with an
additional asymmetry in the peak amplitudes as a function of the bias voltage.

We conclude by mentioning that very recent experimental results [24,25]
indicate confirmation of our theoretical predictions.
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Fig. 6. Total differential conductance (solid lines) as well as the contributions from the
spin up (dashed) and the spin down (dotted-dashed) channel vs. applied bias voltage
V at zero magnetic field Bext = 0 (a,c,e) and at finite magnetic field (b,d,f) for normal
(a,b) and ferromagnetic leads with parallel (c,d) and antiparallel (e,f) alignment of the
lead magnetizations. The degree of spin polarization of the leads is p = 0.2 and the
other parameters are: kBT/Γ = 0.005 and ε/Γ = −2

5 Summary

The interplay of charge and spin degrees of freedom in quantum dots coupled
to ferromagnetic leads is investigated theoretically. The simultaneous presence
of both spin polarization in the leads and strong Coulomb interaction in the
quantum dot generates an exchange field that acts on the quantum-dot electrons.
We analyze its influence on the dot state and the conductance for different
transport regimes. Two mechanisms, which can be important, are identified. The
exchange field can precess an accumulated quantum-dot spin, and it generates a
level splitting. In the limit of weak dot-lead coupling, the spin precession leads to
a nontrivial dependence of the linear conductance on the angle between the leads’
magnetization. For strong dot-lead coupling, the exchange field is detectable in
a splitting of the Kondo resonance, which can be tuned away by additionally
applying an external magnetic field.



162 J. König et al.

Acknowledgments

The presented work is based on joint publications with L. Borda, M. Braun,
R. Bulla, J. von Delft, H. Imamura, S. Maekawa, M. Sindel, Y. Utsumi, and
I. Weymann, all of whom we thank for fruitful collaboration.

We thank G. Bauer, A. Brataas, P. Bruno, T. Costi, A. Fert, L. Glaz-
man, W. Hofstetter, B. Jones, C. Marcus, J. Nyg̊ard, A. Pasupathy, D. Ralph,
A. Rosch, S. Takahashi, D. Urban, and M. Vojta for discussions. This work was
supported by the Deutsche Forschungsgemeinschaft under the Center for Fun-
ctional Nanostructures and the Emmy-Noether program, and by the European
Community under the ’Spintronics’ RT Network of the EC RTN2-2001-00440,
Project PBZ/KBN/044/P03/2001, and the Centre of Excellence for Magnetic
and Molecular Materials for Future Electronics within the EC Contract G5MA-
CT-2002-04049.

References

1. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar,
M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger: Science 294, 1488 (2001)

2. Semiconductor Spintronics and Quantum Computation, ed. by D.D. Awschalom,
D. Loss, and N. Samarth (Springer, Berlin 2002)

3. S. Maekawa, T. Shinjo: Spin Dependent Transport in Magnetic Nanostructures
(Taylor & Francis 2002)

4. D.V. Averin, K.K. Likharev: in Mesoscopic Phenomenon in Solids, ed. by B.L. Alts-
huler, P.A. Lee, R.A. Webb (Amsterdam: North-Holland 1991)

5. Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures, NATO
ASI Series B: Physics 294, ed. by H. Grabert, M.H. Devoret (Plenum Press, New
York 1992)

6. Mesoscopic Electron Transport, ed. by L.L. Sohn, L.P. Kouwenhoven, G. Schön
(Kluwer, Dordrecht 1997)

7. M. Jullière: Phys. Lett. A 54, 225 (1975)
8. J.C. Slonczewski: Phys. Rev. B 39, 6995 (1989)
9. J.S. Moodera, L.R. Kinder: J. Appl. Phys. 79, 4724 (1996); H. Jaffrès, D. Lacour,

F. Nguyen Van Dau, J. Briatico, F. Petroff, A. Vaurès: Phys. Rev. B 64, 064427
(2001)

10. S. Datta, B. Das: Appl. Phys. Lett. 56, 665 (1990)
11. A.C. Hewson: The Kondo Problem to Heavy Fermions (Cambridge Univ. Press

1993)
12. L.F. Schelp, A. Fert, F. Fettar, P. Holody, S.F. Lee, J.L. Maurice, F. Petroff,

A. Vaurès: Phys. Rev. B 56, 5747 (1997)
13. H. Brückl, G. Reiss, H. Vinzelberg, M. Bertram, I. Mönch, J. Schumann: Phys.

Rev. B 58, 8893 (1998)
14. K. Ono, H. Shimada, S. Kobayashi, Y. Ootuka: J. Phys. Soc. Jpn. 65, 3449 (1996);

K. Ono, H. Shimada, Y. Ootuka, J. Phys. Soc. Jpn. 66, 1261 (1997)
15. S. Mitani, S. Takahashi, K. Takanashi, K. Yakushiji, S. Maekawa, H. Fujimori:

Phys. Rev. Lett. 81, 2799 (1998); H. Imamura, J. Chiba, S. Mitani, K. Takanashi,
S. Takahashi, S. Maekawa, H. Fujimori: Phys. Rev. B 61, 46 (2000); K. Yakushiji,
S. Mitani, K. Takanashi, S. Takahashi, S. Maekawa, H. Imamura, H. Fujimori:
Appl. Phys. Lett. 78, 515 (2001)



Quantum Dots Attached to Ferromagnetic Leads 163

16. K. Yakushiji, S. Mitani, K. Takanashi, H. Fujimori: J. Appl. Phys. 91, 7038 (2002)
17. C.D. Chen, Y.D. Yao, S.F. Lee, J.H. Shyu: J. Appl. Phys. 91, 7469 (2002)
18. Y. Chye, M.E. White, E. Johnston-Halperin, B.D. Gerardot, D.D. Awschalom,

P.M. Petroff: Phys. Rev. B 66, 201301(R) (2002)
19. M.M. Deshmukh, D.C. Ralph: Phys. Rev. Lett. 89, 266803 (2002)
20. R. Jansen, J.S. Moodera: Appl. Phys. Lett. 75, 400 (1999); S. Tanoue, A. Yamasaki:

J. Appl. Phys. 88, 4764 (2000)
21. J. Nyg̊ard, D.H. Cobden, P.E. Lindelof: Nature 408, 342 (2000)
22. M.R. Buitelaar, T. Nussbaumer, C. Schönenberger: Phys. Rev. Lett. 89, 256801

(2002)
23. A. Jensen, J. Nyg̊ard, J. Borggreen: in Proceedings of the International Symposium

on Mesoscopic Superconductivity and Spintronics, ed. by H. Takayanagi, J. Nitta
(World Scientific 2003) pp. 33-37; B. Zhao, I. Mönch, H. Vinzelberg, T. Mühl,
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33. N. Sergueev, Q.F. Sun, H. Guo, B.G. Wang, J. Wang: Phys. Rev. B 65, 165303

(2002)
34. P. Zhang, Q.K. Xue, Y. Wang, X.C. Xie: Phys. Rev. Lett. 89, 286803 (2002)
35. B.R. Bu�lka, S. Lipinski: Phys. Rev. B 67, 024404 (2003)
36. R. Lopez, D. Sanchez: Phys. Rev. Lett. 90, 116602 (2003)
37. J. Martinek, Y. Utsumi, H. Imamura, J. Barnaś, S. Maekawa, J. König, G. Schön:
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Abstract. We generalize the fermionic renormalization group method to analytically
describe transport through a double barrier structure in a one-dimensional system.
Focusing on the case of weakly interacting electrons, we investigate thoroughly the
dependence of the conductance on the strength and the shape of the double barrier for
arbitrary temperature T , down to zero T . We systematically analyze the contributions
to renormalized scattering amplitudes from characteristic scales absent in the case of a
single impurity, without restricting the consideration to the model of a single resonant
level. Both a sequential resonant tunneling for high T and a resonant transmission for
T smaller than the resonance width are studied within the unified treatment of trans-
port through strong barriers. For weak barriers, we show that two different regimes are
possible. Moderately weak impurities get strong due to the renormalization, so that
transport is described in terms of theory for initially strong barriers. The renormaliza-
tion of very weak impurities does not yield any peak in the transmission probability;
however, remarkably, the interaction gives rise to a sharp peak in the conductance.

1 Introduction

Effects related to the Coulomb interaction between electrons become increasingly
prominent in systems of lower spatial dimensionality as their size is made smal-
ler. Recent experimental progress in controlled preparation of nanoscale devices
has led to a revival of interest in the transport properties of one-dimensional
(1D) quantum wires. Owing to the particular geometry of the Fermi surface,
systems of dimensionality one are unique in that the Coulomb correlations in
1D change a noninteracting picture completely and thus play a pivotal role
in low-temperature physics. A remarkable example of a correlated 1D electron
phase is the Luttinger-liquid model [1,2]. In this model, arbitrarily weak interac-
tions ruin the conventional Fermi liquid phenomenology by essentially modifying
low-energy excitations across the Fermi surface. As a result, the tunneling den-
sity of states develops power-law singularities on the Fermi surface. Interactions
between electrons moving in opposite directions lead to striking transport pro-
perties of a Luttinger liquid in the presence of impurities. In particular, even a
single impurity yields a complete pinning of a Luttinger liquid with repulsive
interactions [3,4].

Evidence has recently emerged pointing towards the existence of the Luttin-
ger liquid in metallic single-wall carbon nanotubes [5,6]. The Luttinger liquid

I.V. Gornyi and D.G. Polyakov, Transport of Interacting Electrons Through a Quantum Dot in
Nanowires, Lect. Notes Phys. 658, 165–184 (2005)
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behavior was observed via the power-law temperature and bias-voltage depen-
dence of the current through tunneling contacts attached to the nanotubes. Fur-
ther technological advances have made possible the fabrication of low-resistance
contacts between nanotubes and metallic leads (see, e.g., [7–10] and references
therein). These recent developments have paved the way for systematic transport
measurements in Luttinger liquids with impurities.

Here, we study transport through a double barrier in a 1D liquid. In the 1D
geometry, two impurities in effect create a quantum dot inside the system. Re-
sonant tunneling through the two impurities is a particularly attractive setup to
investigate the correlated transport in an inhomogeneous Luttinger liquid: due
to the resonant behavior of the current, the interplay of Luttinger-liquid corre-
lations and impurity-induced backscattering is more easily accessible to trans-
port measurements. Two striking experimental observations have been reported
recently. In [11], a resonant structure of the conductance of a semiconductor
single-mode quantum wire was attributed to the formation (with reduction of
electron density by changing gate voltage) of a single disorder-induced quantum
dot. In [12], two barriers were created inside a carbon nanotube in a controlled
way with an atomic force microscope. In both cases, the amplitude of a con-
ductance peak Gp as a function of temperature T showed power-law behavior
Gp ∝ T−γ with the exponent γ noticeably different from γ = 1. The latter is the
value of γ expected in the absence of interactions provided T lies in the range
Γ � T � ∆, where Γ is the width of a resonance in the transmission coefficient
and ∆ is the single-particle level spacing. The width of a conductance peak w
followed a linear T dependence w ∝ T in both experiments.

On the theoretical side, resonant tunneling in a Luttinger liquid was studied
in a number of papers [3,13–18]. In particular, the width Γ ∝ Tαe was shown
[13,16] to shrink with decreasing temperature. The exponent αe depends on the
strength of interaction and describes tunneling into the end of a semi-infinite
liquid. The dimensionless peak conductance (in units of e2/h) obeys Gp ∼ Γ/T
in the above range of T , which indeed leads to a smaller value of γ = 1 − αe.
The reduced exponent γ reported in [11] was positive (and different for different
conductance peaks, in the range γ ∼ 0.5 − 0.8), whereas in [12] the reported
value of γ � −0.7 was negative. More specifically, in [12], the conductance as a
function of the gate voltage showed certain traces of periodicity characteristic
to the Coulomb blockade regime. Surprisingly, both the amplitude Gp and the
width w were reported to vanish with decreasing T , in sharp contrast to the
noninteracting case. While such behavior is known to be possible for very strong
repulsive interaction [13,16], the required strength of interaction would then
be much larger than expected and indeed reported (see [5,6,19] and references
therein) in carbon nanotubes. Roughly a doubling (or even a larger factor) of
the expected [19,5,6] exponent αe, which is αe ∼ 0.6 − 1.0, would be necessary
to fit the experimental data.

It is thus desirable to examine the resonant tunneling in a Luttinger liquid in
a broad range of temperature down to T = 0 and for various parameters of the
barriers. There are a variety of techniques to construct the low-energy transport
theory [1,2,20]. The method we develop here is valid for weak interaction and is



Transport of Interacting Electrons Through a Quantum Dot in Nanowires 167

based on the renormalization group (RG) approach of [21], which was applied
earlier in a variety of contexts [22–25]. One of the appeals of this kind of theory is
that it allows one to treat weak and strong scatterers on an equal footing, which is
technically significantly less straightforward in the bosonization method [2]. The
RG approach enables us to investigate in detail the resonant transport of weakly
interacting spinless electrons. Within the fermionic RG approach, we confirm
earlier results [3,13,16] obtained within bosonic field theories. We examine the
conductance through a double barrier for arbitrary strength and an arbitrary
shape of the barrier, not restricting ourselves to the model of a single resonant
level. In particular, we demonstrate the existence of narrow conductance peaks
for two weak impurities, which is in sharp contrast to the noninteracting case.
We do not find any trace of the correlated tunneling mechanism proposed in
[12,26]. Part of this work was presented in [27].

2 Fermionic Renormalization Group

2.1 Single Impurity: Basic Results

We begin with a brief description of transport through a single structureless
impurity in the spirit of the RG approach [21]. Without interaction, the impurity
is characterized by a transmission coefficient t0 and reflection coefficients rL0 and
rR0, from the left and from the right respectively (we put the impurity at the
center of coordinates, x = 0). Suppose that the energy dependence of the bare
scattering matrix can be neglected far from the boundaries of an energy band
(−D0, D0) around the Fermi level. The energy scale D0 serves as the ultraviolet
cutoff of RG transformations and, physically, is of the order of vF /d (throughout
the paper we put � = 1) or the Fermi energy εF , whichever is smaller. Here
d is the radius of interaction and vF is the Fermi velocity. Deep inside the
band (−D0, D0), we linearize the energy spectrum around the Fermi level. The
differential RG equations [21] read

∂t/∂L = −αtR , ∂rL,R/∂L = αrL,RT , (1)

where L = ln(D0/|ε|), the energy ε is measured from the Fermi level and the
transmission probability T = 1−R = |t|2. The boundary conditions at L = 0 set
the scattering amplitudes at their noninteracting values t0, rL0,R0. Throughout
the paper we consider spinless electrons, for which the interaction constant is

α = (Vf − Vb)/2πvF , (2)

where Vf and Vb are the Fourier transforms of a pairwise interaction potential
yielding forward (Vf ) and backward (Vb) scattering. The forward scattering does
not lead to transitions between two branches of right- and left-movers, whereas
the backscattering does. We assume that α > 0.

Note that, for spinless electrons, the interaction-induced backward scattering
and forward scattering relate to each other as direct and exchange processes,
so that the backscattering only appears in the combination Vf − Vb and thus
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merely redefines parameters of the Luttinger model (formulated [1] in terms of
forward-scattering amplitudes only). In particular, the backscattering does not
lead to any RG flow for α. For spinful electrons this is valid only to one-loop
order [1]. It is also worth mentioning that for a point interaction Vf = Vb, so that
α = 0, hence for spinless electrons one has to start with a finite-range interaction.
However, the RG flow for the scattering matrix (1) occurs for |ε| < vF /d and is
governed solely by the constant α. It follows that on low-energy scales one can
effectively consider the interaction as local, Veff(x− x′) = 2παvF δ(x− x′), and
formally deal exclusively with forward scattering. A non-zero range of interaction
for kF d � 1 manifests itself only in the boundary conditions to (1) at |ε| ∼ D0 =
vF /d and therefore does not affect the singular behavior of the renormalized
scattering matrix at ε → 0. We assume that the Coulomb interaction between
electrons is screened by external charges (e.g., by metallic gates, in which case
d is given by the distance to the gates) and that a resulting α � 1.

Integration of (1) gives [21]

R
T

=
R0

T0

(
D0

|ε|

)2α

. (3)

The phases of the scattering amplitudes are not affected by the renormalization.
Equations (1) are equivalent to a one-loop renormalization, so that (3) is valid
to first order in interaction ∼ O(α) in the exponent of the power-law scaling. As
follows from (3), whatever the initial values of T0, at α > 0 they all flow to the
fixed point of (1) at zero transmission [3], T = 0 at ε = 0. In the limits of a weak
impurity (both R0 � 1 and R � 1) and a strong tunneling barrier (T0 � 1),
(3) coincides with the RG results obtained by bosonization [3], provided α � 1.
Equation (3) gives the transmission probability for electrons with energy ε at
T = 0. For finite T , the renormalization stops at |ε| ∼ T .

Beyond the microscopic scale D0, it is instructive to introduce two more ener-
getic scales that characterize the renormalization of the transmission coefficient
by weak interaction, Dp and Dr:

ln(Dp/D0) = −1/α , Dr/D0 = R1/2α
0 . (4)

The energy Dp defines the scale on which a perturbation theory in interaction
breaks down. If |ε| < Dp, the interaction requires a non-perturbative treatment.
The scale Dp does not depend on R0 and is much smaller than D0 for α � 1.
The energy Dr defines the scale on which a perturbation theory in the impurity
strength breaks down. If |ε| < Dr, a weak impurity with R0 � 1 yields strong
reflection, R ∼ 1. Provided R0 � 1, the scales Dp and Dr are parametrically
different and, for any α, Dr � Dp. We will see in Sect. 2.3 that the scale Dr is
of central importance in RG theory for a double-barrier structure.

2.2 Renormalization Group for a Double Barrier

Consider two potential barriers located at x = 0 and x = x0 and let the distance
x0 be much larger than the width of each of them. The spatial structure itself
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yields an energy dependence of the total (describing scattering on both impuri-
ties) transmission and reflection amplitudes, t(ε) and rL,R(ε). Specifically, with-
out interaction the energy ∆ = πvF /x0 gives a period of oscillations in the total
scattering amplitudes with changing εF . An RG description of a double barrier
requires a generalization of the RG [21] to the case when the bare amplitudes are
energy dependent. A question, however, arises if the total amplitudes generated
by RG transformations are expressed in terms of themselves only. The answer
depends on the parameter ∆/D0, where D0 = min{εF , vF /d}. If ∆ � D0, the
RG transformations generate more terms than are encoded in the total S-matrix,
namely the amplitudes to stay inside the dot Aµ,−µ(ε) and those to escape from
the dot to the left(right) d±

µ (ε) for right(left)-movers (µ = ±).
We now derive non-perturbative amplitudes for a double barrier using an

appropriate RG scheme. To account for the ε dependence of the bare amplitudes,
the derivation of the RG from the perturbative results necessitates introduction
of two energies, ε and D. The latter is a flow parameter in RG transformations,
i.e., an ultraviolet cutoff rescaled after tracing over states with energies ε′ in
the interval |ε′| ∈ (D,D0). The renormalization stops at D = max{|ε|, T}. The
system of one-loop RG equations for a double barrier reads [27]

∂t(ε,D)/∂LD = Îε′(ε,D)
{
L+(ε, ε′;D) + θ(−ε′)t(ε,D)

× [ rR(ε,D)r∗
R(ε′, D)χε−ε′ + rL(ε,D)r∗

L(ε′, D) ]
}
, (5)

∂rL(ε,D)/∂LD = Îε′(ε,D)
{
L−(ε, ε′;D) + θ(ε′)rL(ε′, D)

+ θ(−ε′)[ t2(ε,D)r∗
R(ε′, D)χε−ε′ + r2L(ε,D)r∗

L(ε′, D) ]
}
, (6)

and similar equations for other amplitudes. Here LD = ln(D0/D) (we introduced
D dependent amplitudes),

Lµ(ε, ε′) = d−
−(ε)A+−(ε′)dµ

−(ε)(χε−ε′ − 1) + d−
+(ε)A−+(ε′)dµ

+(ε)(1 − χε′−ε) , (7)

Îε′(ε,D){...} = − α

2 lnΛ

[∫ ΛD

D

+
∫ −D

−ΛD

]
dε′

ε− ε′
{. . .} , (8)

Λ � 1 is restricted by the condition α lnΛ � 1, and χε = exp(2πiε/∆).
The essence of the RG procedure is a perturbative treatment of contributions

to the renormalized amplitudes at energy ε from all states with energies ε′ in
the interval |ε′| ∈ (D,ΛD), starting from D = D0/Λ. The RG equations thus
differ from the Hartree-Fock equations in that all the amplitudes depend on
D and, moreover, the Hartree-Fock type integration over projected states with
energies ε′ only goes over the interval |ε′| ∈ (D,ΛD) instead of (0, D0). In effect,
each step of the RG transformations accounts for the scattering off the Friedel
oscillations in a finite spatial region, |x|, |x − x0| ∈ (vF /ΛD, vF /D). Moreover,
the Friedel oscillations are only partly modified, through the (already performed)
renormalization of the reflection amplitudes at energies larger than D. At the
same time, the scattering matrix at energies smaller than D is taken at its
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bare value. This should be contrasted with the Hartree-Fock approach, where
the scattering amplitudes are determined by interaction processes on all energy
scales on every step of the Hartree-Fock iterations.

At finite temperature T , one should substitute the Fermi distribution func-
tion nF (ε) for the step functions in (5) and (6) according to θ(±ε) → nF (∓ε).
The factor (ε − ε′)−1 in (8) effectively stops the renormalization at D ∼ |ε|,
while the factors nF (±ε′) do so at D ∼ T , otherwise the renormalization can
be carried out down to D = 0. The infrared cutoff at D ∼ T establishes
a characteristic spatial scale of LT = vF /T . Due to the thermal smearing,
the Friedel oscillations decay exponentially on a scale of LT . The RG equa-
tions (5),(6) should be solved with proper boundary conditions at D = D0:
t0(ε) = t1t2S

−1(ε), rL0(ε) = r1 + r2t
2
1 χεS

−1(ε), and similarly for other amplitu-
des. Here S(ε) = 1 − r2r

′
1χε, and rR0(ε) = −r∗

L0(ε)t0(ε)/t
∗
0(ε) by unitarity.

We are now in a position to solve the system of RG equations (5),(6) by
integrating out all states with energies |ε′| > max{|ε|, T}. We begin with the
case D0 � ∆, which is a typical case unless interaction is very long ranged.
We proceed in two steps. Let us first integrate over D � ∆. This can be done
for arbitrary ε. Specifically, if |ε| > ∆, this will already solve the problem by
providing us with fully renormalized amplitudes. In the more interesting case
of |ε| < ∆, we will only sum up contributions to the renormalized amplitudes
from states with |ε′| > ∆ and, as a second step, will have to proceed with
renormalization for D < ∆.

2.3 Separate Renormalization of Two Impurities: D � ∆

Since the renormalization for D � ∆ involves many resonant levels, the ampli-
tudes contain slowly varying parts and parts oscillating rapidly with changing ε′

on a scale of ∆. Integration over ε′ in (5),(6) allows us to separate the slow and
fast variables: as a result, the dependence of the amplitudes on D will be slow
on the scale of ∆. To construct the solution to the RG equations, note that an
important parameter D/Drmin is available, where Drmin = min{Dr1 , Dr2} and
Dr1,2 are defined for each of two barriers by (4). If both barriers are initially (i.e.,
at D = D0) strong (|t1,2| � 1), then this parameter is small for all D < D0.
However, if one or both of the barriers are initially weak, there is a range of
D ∈ (Drmin , D0) where at least one barrier still remains weak.

It is useful first to examine some general properties of integrals over ε′ that
appear in the course of renormalization. We see that the averaging over ε′ involves
two types of integrals

I1 =
∫ D0

|ε|

dε′

ε′
1

S(ε′)
, I2 =

∫ D0

|ε|

dε′

ε′
χε′

S(ε′)
, (9)

where I1,2 are related by I2 = (I1 − L)/r′
1r2. The integrals (9) are evaluated in

different ways depending on whether at least one of the barriers is weak (|r′
1r2| �

1) or both barriers are strong (|r′
1r2| � 1). In the former case the integrand of I1

is only slightly modulated, so that one can expand the factor S−1(ε′) and average
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over harmonics χn(ε′). Then only zero harmonics yield singular (logarithmic)
corrections and in the leading-log approximation we have

I1 = L , I2 = 0 . (10)

In the opposite case of strong barriers, sharp resonances appear that are descri-
bed by a Breit-Wigner formula for S−1(ε′) and give |I1| � |I2|:

I1 = L/2 , I2 = −L/2r′
1r2 . (11)

The situation repeats itself in the RG equations (5),(6). The difference in the fac-
tor of 1/2 between the values of I1 in (10),(11) implies that the renormalization
should be carried out differently in the regions D � Drmin and ∆ � D � Drmin .

For D � Drmin , similarly to (10), after the averaging over ε′ only zero har-
monics contribute to the renormalization. The solution at D � Drmin has the
form of Fabry-Perot equations with the reflection and transmission amplitudes
of each of two barriers renormalized separately, according to the RG (1),(3) for
a single impurity:

∂t1,2(D)/∂LD = −αt1,2(D)|r1,2(D)|2 , (12)
∂r1,2(D)/∂LD = αr1,2(D)|t1,2(D)|2 . (13)

Accordingly, the amplitudes describing a Fabry-Perot resonance with the repla-
cement

t1,2 → (D/D0)αt1,2

[ |r1,2|2 + (D/D0)2α|t1,2|2 ]1/2 , (14)

r1,2(r′
1,2) →

r1,2(r′
1,2)

[ |r1,2|2 + (D/D0)2α|t1,2|2 ]1/2 (15)

solve (5),(6) averaged over harmonics for D � max{Drmin , ∆}.
On the other hand, if Drmin � ∆, there is an interval of D ∈ (∆,Drmin) in

which each of the impurities is strongly reflecting, so that the averaged equations
are again simplified by summing over resonance poles, similarly to (11). We get
an independent renormalization of t1,2(D) according to

t1,2(D)/t1,2(Drmin) = (D/Drmin)α/2 , (16)

and the scaling exponent is now half that for D � Drmin . We thus have two
solutions given by (14),(15) and (16), respectively, that match onto each other
at D ∼ Drmin . Due to the slow power-law dependence, for α � 1 the matching
is exact.

We conclude that the key difference between the renormalization for D lar-
ger and smaller than Drmin is that for D � Drmin the transmission amplitudes
for each barrier are renormalized with the exponent α, whereas for D � Drmin

with the exponent α/2. In both limiting cases, two barriers are renormalized
separately for D � ∆. It is worth stressing that generally the independent re-
normalizations of two barriers cannot be derived from RG equations written in
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terms of only t(ε) and rL,R(ε), i.e., the terms Lµ(ε, ε′;D) are of crucial impor-
tance in the derivation of (12)–(15). However, the renormalization of resonant
tunneling amplitudes for energies near resonances allows for another formulation
which involves t(ε) and rL,R(ε) only, we will return to this issue in Sect. 2.4.

If ε is close to one of resonant energies, (5),(6) can be further simplified
by expanding χε near the resonance: the renormalized amplitudes for strong
barriers take then the form of Breit-Wigner amplitudes withD dependent widths
Γ1,2(D) = (∆/2π)|t1,2(D)|2 ∝ Dα. Specifically, for initially strong barriers:

Γ1,2(D) =
∆

2π
|t1,2|2

(
D

D0

)α

, (17)

where |t1,2|2 � 1 are the bare transmission probabilities at D = D0 and resonant
peaks are sharp [i.e., Γ1,2(D) � ∆] for all D < D0. If at least one barrier is
initially weak, the resonant structure develops only at D � Drmin . Provided one
barrier is initially weak (assume this is the right barrier and Dr2 � ∆), whereas
the other is strong, then

Γ1(D) =
∆

2π
|t1|2

(
DDr2

D2
0

)α

, Γ2(D) =
∆

2π

(
D

Dr2

)α

. (18)

If ∆ � Dr2 < Dr1 � D0, i.e., both barriers are initially weak, then

Γ1(D) =
∆

2π

(
DDr2

D2
r1

)α

(19)

and Γ2(D) is given again by (18).
To summarize this section, we have found the fully renormalized scattering

amplitudes for |ε| > ∆ if |ε| � T . Also, if T � ∆, substituting D → T solves
the problem for arbitrary ε. However, when both |ε|, T � ∆, we should proceed
with the renormalization in the range D � ∆.

2.4 Single Resonance: D � ∆

Let us now consider (5),(6) for |ε|, |ε′| � ∆. In this limit, the terms (7) containing
the amplitudes Aµ,−µ(ε′) to stay inside the dot become irrelevant in the RG
sense: the phase factors χε−ε′ in (7) can be expanded about ε, ε′ = 0, which leads
to the cancellation of the singular factor (ε− ε′)−1 in (8). As a result, the terms
Lµ(ε, ε′;D) do not contribute to the renormalization atD � ∆. The factors χε−ε′

should also be omitted in the terms of (5),(6) that are proportional to r∗
R(ε′).

Thus we are led to a coupled set of RG equations that describe also a single
impurity with energy dependent scattering amplitudes: the spatial structure of
the double barrier system is of no importance for the renormalization at D � ∆.
However, the boundary conditions in the double-barrier case should be written
at D ∼ ∆, instead of D ∼ D0. We obtain for |ε|, |ε′|, D � ∆:

∂t(ε,D)/∂LD = −(α/2) t(ε,D) [ rR(ε,D) r∗
R(D) + rL(ε,D) r∗

L(D) ] , (20)
∂rL(ε,D)/∂LD = (α/2) [ rL(D) − t2(ε,D) r∗

R(D) − r2L(ε,D) r∗
L(D) ] , (21)
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and similarly for rR(ε,D), where the bar over the reflection amplitudes denotes
the averaging (8) over ε′.

We integrate now (20),(21) assuming that each of two barriers is characterized
by Dr1,2 � ∆. This condition means that either the barriers are strong initially
at D = D0 or get strong in the course of renormalization (12),(13) before D
equals ∆. We will analyze the case of both or one of Dr1,2 being smaller than ∆
in Sect. 2.6.

Consider first the case of a resonance energy ε0 lying exactly on the Fermi le-
vel, ε0 = 0. Let Γ (D) be a renormalized width of the resonance peak at the Fermi
energy (to be found below). If D � Γ (D), then |rL,R(D)| � 1, which allows for a
significant simplification of (20),(21). It is convenient to introduce phase-shifted
amplitudes r̃L = rLe

−iϕr1 , r̃R = rRe
−iϕr′

2
+2πi(εF +ε0)/∆, t̃ = te−i(ϕt1+ϕt2 ), where

ϕr1 is the phase of r1, etc., in obvious notation. Then we get, by putting the
averaged amplitudes far from the resonance r̃L,R(D) = 1:

∂t̃(ε,D)/∂LD = −(α/2) t̃(ε,D) [ r̃L(ε,D) + r̃R(ε,D) ] , (22)
∂r̃L,R(ε,D)/∂LD = (α/2) [ 1 − r̃2L,R(ε,D) − t̃2(ε,D) ] , (23)

with the following solutions

t̃(ε,D) =
[u2

+(D) − u2
−(D)]1/2

u+(D) + 2iε
, (24)

r̃L(ε,D) =
u−(D) + 2iε
u+(D) + 2iε

, r̃R(ε,D) =
−u−(D) + 2iε
u+(D) + 2iε

, (25)

where u±(D) = Γ±(∆)(D/∆)α, and Γ±(∆) = Γ1(∆)±Γ2(∆) should be found
by matching onto (17)–(19). The width of a resonant tunneling peak Γ (D) is
thus given by u+(D).

Note that the only condition we have assumed in the above derivation is D �
Γ (D) with D = max{|ε|, T}, otherwise ε in (24)–(25) may be arbitrary. Thus,
(24)–(25) give the shape of the ε dependence of fully renormalized amplitudes
for the case of temperature T � Γ (T ) (with T substituted for D). In particular,
the width of the resonance behaves as Tα:

Γ (T ) = Γ+(∆)(T/∆)α. (26)

As follows from (24), while the resonance becomes sharper with decreasing T ,
the peak value of the transmission amplitude is not renormalized, since the D
dependent factors cancel in (24) at ε = 0. The absence of renormalization stems
from the vanishing of the sum r̃L(0, D) + r̃R(0, D) in (22).

We recognize (24)–(25) as Breit-Wigner solutions that take into account re-
normalization at D < ∆. On the other hand, we have already obtained Breit-
Wigner formulas in Sect. 2.3, where the renormalization has been carried out for
D � ∆, for ε close to a resonance energy. In particular, the results of Sect. 2.3
apply for |ε| � ∆ if ε0 = 0. The matching of the two solutions at D ∼ ∆ implies
that (20),(21) are in fact valid in a broader range of D, namely for D � Drmin ,
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provided only that one averages rR(ε′, D) over ε′ together with the phase factor
χε′ . It follows that in the case of strong barriers close to resonances the RG
equations can be cast in the form (22),(23) containing t(ε,D) and rL,R(ε,D)
only. Note also that for D0 < ∆ the boundary conditions to (22),(23) are fixed
at D = D0, which leads to the change ∆ → D0 in u±(D).

At this point, one might be concerned about a possible contribution to t(ε =
0, D) from other resonances. Indeed, in the derivation of (24), which gives no
renormalization of t(ε = 0, D), we approximated |r(ε′, D)| by unity for large
|ε′|, D � Γ (D). Corrections coming from other resonances are clearly small in
the parameter Γ1,2(D)/∆ but one should check if they might contribute to the
renormalization of t(ε = 0, D). Relaxing the above approximation by allowing
for resonant “percolation” of electrons through the barriers at D > ∆ does give
a perturbative correction to the RG (22):

∂[δt̃(ε,D)]
∂LD

= −αt̃(ε,D)
πu−(D)

4∆
[ r̃L(ε,D) − r̃R(ε,D) ] , (27)

which, in contrast to (22), does not vanish at ε = 0 (unless the double barrier
is symmetric: the correction is then always zero). However, (27) tells us that
the correction is irrelevant since u−(D) itself scales to zero as Dα. We thus
conclude that the “single-peak approximation” of (22),(23) correctly describes
the renormalization of the resonant amplitudes for all D � Γ (D).

2.5 Inside a Peak: D � Ds

Now that we have integrated out all D � u+(D), let us continue with the
renormalization for D inside a resonant tunneling peak. The point at which D
and u+(D) become equal to each other yields a new characteristic scale Ds:

Ds = Γ+(∆)(Ds/∆)α = Γ+(∆)[Γ+(∆)/∆ ]α
′
, (28)

where Γ+(∆) is obtained from (17)–(19) depending on the ratio of Dr1,2 and D0.
To leading order in α the exponent α′ = α/(1 − α) → α. As will be seen below,
the significance of Ds is that the width of the tunneling resonance saturates with
decreasing D on the scale of Ds.

For D � Ds, (20),(21) can be simplified since the scattering amplitudes now
depend on a single variable, which is D = max{|ε|, T}. The averaged reflection
amplitudes rL,R(D) coincide then with rL,R(D), and the RG equations can be
written in precisely the same form as for a single impurity:

∂t(D)/∂LD = −αt(D)R(D) , ∂rL,R(D)/∂LD = αrL,R(D)T(D) , (29)

with matching conditions at LD = ln(D0/Ds). The difference between the single
structureless impurity and the resonance peak is that in the latter case the
ultraviolet cutoff is Ds.

Consider first the symmetric case of identical barriers. Assuming, as in
Sect. 2.4, that the resonance energy ε0 = 0, we get

t̃(D) =
u+(D)

u+(D) + 2iε
, (30)
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which turns out to be valid down to D = 0. A remarkable consequence of (30) is
that the resonance in the symmetric case is perfect, T = 1 at ε = 0. While this
is trivial for noninteracting electrons, weak interaction in the Luttinger liquid is
seen to preserve the perfect transmission, in agreement with the result obtained
by a bosonic RG [3]. So long as inelastic scattering is not taken into account,
the perfect transmission at ε = 0 is not affected by finite T , either, as is seen
from (30) if one puts D = T . However, the width of the resonance does depend
on T . At T = 0, the width is finite and given by Ds, which follows from (30) for
D = |ε|. For T � Ds, the width obeys (26).

The shape of the perfect resonance depends on the parameter T/Ds. If T �
Ds, the reflection probability as a function of |ε| behaves near ε = 0 first as ε2

for |ε| � T and then as |ε|2(1−α) for T � |ε| � Ds. For larger energies, the
transmission probability falls off with increasing |ε| as

T(ε) = (Ds/2|ε|)2(1−α) . (31)

This lineshape should be contrasted with the Lorentzian which describes the
transmission peak for T � Ds up to |ε| ∼ T , at which point a crossover to (31)
occurs.

Let us now turn to the asymmetric case. Inspecting (29), we see that a new
characteristic scale D− emerges:

D− = Ds[|Γ−(∆)|/Γ+(∆)]1/α, (32)

which coincides with Ds for strongly asymmetric barriers but vanishes for sym-
metric ones. For T > D− we get the same results for T(ε) as in the symmetric
case, only with an overall factor of

λ =
Γ 2

+(∆) − Γ 2
−(∆)

Γ 2
+(∆)

=
4Γ1(∆)Γ2(∆)

[Γ1(∆) + Γ2(∆) ]2
. (33)

However, for T � D− a new feature in the behavior of T(ε) shows up, namely a
power-law fall off with decreasing |ε|. The function T(D), as obtained from (29),
for D � Ds reads

T(D) =
λ(D/Ds)2α

1 − λ [ 1 − (D/Ds)2α ]
. (34)

One sees that T(ε) behaves as (Fig. 1a)

T(ε) = λ(|ε|/D−)2α (35)

in the interval T � |ε| � D− and saturates at smaller energies: T(ε = 0) =
λ(T/D−)2α. Thus, in the limit T � D−, the resonant transmission probability
as a function of ε exhibits a double-peak structure, see Fig. 1a. If, however, the
barriers are only slightly asymmetric, the gap near ε = 0 develops in a range of ε
which is much narrower than the width of the resonance peak. Specifically, T(ε)
first arises with increasing |ε| for T � |ε| � D−, then there is a plateau with an
energy independent transmission for D− � |ε| � Ds, and T(ε) starts to fall off
as |ε| is further increased.
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Fig. 1. Transmission peak structure for zero temperature and strong barriers: (a)
ε0 = 0, symmetric vs asymmetric barriers; (b) 0 < |ε0| < Ds, symmetric barriers

Above, we analyzed the behavior of T(ε) for the resonance energy ε0 = 0,
i.e., when it coincides with the Fermi level. Let us now examine the case ε0 
= 0.
Again, let the barriers first be symmetric. Then, in (30), the resonant denomina-
tor changes to u+(D)+2i(ε− ε0) and D is, as before, max{|ε|, T}. The innocent
looking shift ε → ε−ε0 leads at T = 0 to dramatic consequences for transmission
at the Fermi energy, ε = 0. Namely, T(ε) is now seen to vanish at ε = 0 and zero
T , whatever ε0 unless it is exactly zero. A new characteristic scale D1 becomes
relevant at ε0 
= 0: it is defined by u+(D1) = 2|ε0|, which is rewritten as

D1 = Ds(2|ε0|/Ds)1/α . (36)

The significance of the energy D1 is that the width of the gap in T(ε) around
ε = 0 at T = 0 is given by D1 for |ε0| < Ds. Note that D1 � |ε0| for |ε0| � Ds.

The shape of the resonant peak as a function of ε changes in an essential way
for |ε0| < Ds. Specifically, if T � D1, the changes are weak; however, for T � D1
a range of ε arises, T � |ε| � D1, within which T(ε) behaves as (Fig. 1b)

T(ε) = (|ε|/D1)2α. (37)

The power-law fall off (37) saturates at T(ε = 0) = (T/D1)2α.
We thus see that the width of the resonance in the transmission through

a symmetric barrier exactly at the Fermi energy T(ε = 0) as a function of
ε0 vanishes as T → 0. On the other hand, the width of the resonance in the
transmission at ε0 = 0 as a function of ε is finite even at T = 0 and is given
by Ds. This peculiar feature is in sharp contrast to the resonant tunneling of
noninteracting electrons, for which the two widths are the same.

For asymmetric barriers, T(ε) does not change substantially with increasing
|ε0| as long as D1 � D− and is given by the formulas for symmetric barriers
with an overall reduction of T(ε) by a factor of λ (33) otherwise.
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2.6 Weak Barriers

Let us now examine the resonant transmission in the case of at least one barrier
being initially so weak that the renormalization does not make it strong at
D ∼ ∆. We begin with the case of both barriers characterized by Dr1,2 � ∆.
The total reflection coefficient rL(ε,D) as obtained from (5),(6) in the limit
|rL| � 1 is given (withD = max{|ε|, T}) by

rL(ε,D) = (r1 − r2χε)(D0/D)α . (38)

Suppose first that the barrier is symmetric and ε0 = 0. Then (38) simplifies to

R(ε,D) = 2[ 1 − cos(2πε/∆) ] (Dr/D)2α. (39)

One sees that reflection is enhanced by interaction, but the reflection coefficient is
always small, R � 1 for any ε, if Dr � ∆. No sharp features in the ε dependence
of the scattering amplitudes emerge around the Fermi energy.

It is now instructive to introduce a weak asymmetry R− = |R2 − R1|, such
that R− � R � R1,2. Given that the asymmetry is weak, it can manifests itself
only at small energies. Expanding (38) about ε = 0, we get for |ε| � ∆:

R(ε,D) =
[
(R−/2R)2 + (2πε/∆)2

]
(Dr/D)2α

. (40)

As can be seen from (40), asymmetry sets two new characteristic scales of energy:
(R−/R)∆ and a smaller scale

δ− = Dr(R−/2R)1/α. (41)

Provided that temperature T � (R−/R)∆, the reflection coefficient starts to
grow with approaching the Fermi level at |ε| ∼ (R−/R)∆. The enhancement of
reflection is cut off by temperature before R becomes of order unity if T is not
too low, specifically if δ− � T . However, if T � δ−, then reflection gets strong
at |ε| ∼ δ−. To describe the scattering probabilities at |ε| < δ−, one should solve
(29), derived in the same way it was done in Sect. 2.5, now with matching onto
the perturbative (in R1,2) solution (38) anywhere in the region δ− � |ε| � ∆.
For D � (R−/R)∆ the solution reads:

T(D) = 1/ [ 1 + (δ−/D)2α] . (42)

Thus, the weak double barrier remains slightly reflecting after the renormaliza-
tion provided that T � δ−. However, for both T, |ε| � δ− the transmission
probability is small: within the range T � |ε| � δ−, T(ε) behaves as (Fig. 2a)

T(ε) = (|ε|/δ−)2α , (43)

and saturates for smaller |ε| at T(ε = 0) = (T/δ−)2α. Comparing (43),(35) with
each other, we see that the energy δ− is a counterpart of D− for the case of a
weak barrier.
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Fig. 2. Transmission coefficient for zero temperature and weak barriers: (a) ε0 = 0,
symmetric (solid) and asymmetric (dashed) barriers; (b) ε0 �= 0, symmetric barriers,
the bare transmission (dash-dotted) is strongly renormalized (solid)

Generalizing to ε0 
= 0, we have for |ε0| � ∆ a shift ε → ε− ε0 in (40), while
D = max{|ε|, T}. A new energy scale δ1 � ε0 appears, at which the reflection
coefficient becomes of order unity in the symmetric case:

δ1 = Dr (2π|ε0|/∆)1/α, (44)

analogous to D1 in (36) for tunneling barriers. The energy δ1 gives the width
of the gap in the transmission probability at the Fermi level at T = 0. For
T � |ε| � δ1, we get a power-law vanishing of T(ε) = (|ε|/δ1)2α with decreasing
|ε| (see Fig. 2b) and a saturation for smaller |ε| at (T/δ1)2α. A general expression
for the scattering probabilities, valid for arbitrary Dr1,2 � ∆ and |ε|, D � ∆,
can be obtained from (29):

R(ε,D)
T(ε,D)

=

[
(
R1/2

1 − R1/2
2

)2
+ (R1R2)1/2

(
2π
∆

)2

(ε− ε0)2
](

D0

D

)2α

. (45)

Equation (45) reproduces (40)–(44) in the corresponding limits.
We conclude that if the barriers are symmetric but ε0 is nonzero, or if the

barriers are asymmetric, the transmission probability vanishes (Fig. 2) at the
Fermi level in the limit T → 0. We will see in Sect. 3 that these features lead
to the emergence of a sharp peak in the low-T conductance as a function of ε0
even for two weak impurities, provided only that they are slightly asymmetric.

Finally, when two strongly asymmetric barriers are located nearby, so that
at D ∼ ∆ one barrier is strongly reflecting whereas the other is still weak, the
effect of the latter on the transmission probability remains small for any D. Let
us take the example Dr1 � ∆ and Dr2 � ∆. Then we get for Dr1 � D � ∆

T(ε,D) = (D/Dr1)
2α [ 1 + 2(Dr2/D)α cos θ ] , (46)

where θ = 2π(ε − ε0)/∆. One sees that the presence of the weak impurity only
leads to a weak modulation with changing ε. For D < ∆, the independent re-
normalization of the weaker impurity is suppressed by reflection from the strong
barrier and T(D) behaves as (D/Dr1)

2α down to D = 0.
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3 Conductance Peak

The solution to the problem of transmission through a double barrier given in
the preceding sections allows us to examine the linear conductance of the system
G(ε0, T ) as a function of temperature T and the energy distance between the
Fermi level and a resonance level ε0. Recall that we have studied the elastic
transmission of interacting electrons, i.e., the energy ε of an incident electron
before and after the transmission is the same. At finite T , there are also inelastic
processes, characterized by the inelastic scattering length Lin. Neglecting the
inelastic scattering is legitimate if Lin � LT = vF /T , which is satisfied in the
present problem for weak interaction α � 1. Under these conditions (within the
one-loop approximation, i.e., keeping only first order terms in the exponents),
one can use the Landauer-Büttiker formalism relating the conductance and the
transmission probability. The conductance G(ε0, T ) in units of e2/h reads

G(ε0, T ) =
∫
dε T(ε) (−∂nF /∂ε) . (47)

We are interested in the low-temperature regime with T � ∆, otherwise we
intend to keep T arbitrary, i.e., T may be as small as zero.

3.1 Strong Barriers

Consider first the case of strong barriers (more precisely, the bare transmission
through the barriers may be high, T1,2 � 1, but we assume that the barriers get
strong before the RG flow parameter D equals the single-particle energy spacing
inside the dot, ∆), i.e., Drmin = D0(min{R1,R2})1/2α � ∆. Then we have a
sharp peak of the transmission probability centered at ε = ε0 whose width is
max{Ds, Γ (T )} � ∆, where Ds and Γ (T) are defined in (26),(28). That is, the
width of the peak in T(ε, T ) is Γ (T ) = Ds(T/Ds)α for T � Ds, whereas for
smaller T � Ds the width is of order Ds and does not depend on T .

T � Ds, Sequential Tunneling. For T � Ds, the shape of the conductance
peak is given by (Fig. 3)

G(ε0, T ) = ζ Gp cosh−2(ε0/2T ) , (48)

where the peak value of the conductance

Gp = πλΓ (T )/8T , (49)

with λ defined in (33), and ζ = (max{|ε0|, T}/T )α. The width of the conductance
peak w is of order T , as for noninteracting electrons; however, the power-law
behavior of Gp(T ) is seen to be modified by interaction, in accordance with the
results derived in [13,16]. Note that the scaling of Gp ∝ Tα−1 is governed by the
single-particle density of states ρe(T ) for tunneling into the end of a Luttinger
liquid, namely Gp ∝ ρe(T )/T [20].
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Fig. 3. Strong barriers: Conductance G (in units of e2/h) as a function of ε0 for
symmetric (a) and asymmetric (b) barriers

We recognize (48),(49) as the conventional sequential tunneling formulas, but
with a T dependent resonance width Γ (T ). Far in the wings of the resonance the
exponential fall off (48), G(ε0, T ) ∼ λT−1Γ (|ε0|) exp(−|ε0|/T ), crosses over onto
the co-tunneling (determined by the processes of fourth order in tunneling am-
plitudes) power law G(ε0, T ) = λΓ 2(T )/4ε20, as usual. The crossover between the
sequential tunneling and co-tunneling regimes occurs at |ε0| � T ln [T/Γ (T ) ].
In fact, this formula is valid [16] for an arbitrary strength of interaction with
Γ (T ) ∝ ρe(T ) ∝ Tαe , where αe (equal to α for a weak interaction) is the end-
tunneling exponent. It is worthwhile to note that for strong enough interaction
(namely for αe > 1) the sequential mechanism of tunneling is effective for the
resonance peak for all T , down to T = 0 [16]. Moreover, for αe > 1 the crossover
to the co-tunneling regime shifts towards larger |ε0| with increasing strength of
interaction.

T � Ds, Symmetric Barriers. Let us now turn to low temperatures T � Ds,
where processes of all orders in the tunneling amplitudes are important. Consider
first the symmetric case (Fig. 3a). The main contribution to the integral over ε
in (47) comes from |ε| ∼ T � Ds, so that the shape of the conductance peak is
a Lorentzian:

G(ε0, T ) = Γ 2(T )/ [Γ 2(T ) + 4ε20 ] . (50)

We see that the height of the peak Gp = 1 and the width

w = Ds(T/Ds)α (51)

exhibits a power-law temperature dependence with an exponent depending on
the strength of interaction. The vanishing of w as T → 0 should be contrasted
with the behavior of the peak in T(ε, T ) (Fig. 1), whose width is Ds for low
T . In the limit T → 0, the conductance peak becomes infinitely narrow but
the resonance at ε0 = 0 persists down to T = 0, in accordance with [3]. We
thus confirm the persistence [3] of the perfect resonance at T = 0 by means
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of the fermionic RG. For finite T � Ds, there is a small correction 1 − Gp ∼
(T/Ds)2(1−α), which comes from the non-perfect transmission for finite ε at
ε0 = 0 after the thermal averaging (47).

T � Ds, Asymmetric Barriers. We recall that the renormalization in the
asymmetric case is governed by the scale D− [defined in (32)] which describes the
degree of asymmetry. The double-peak structure of the transmission coefficient
as a function of ε0 for T � D− translates into a complete vanishing of the
conductance peak at T → 0. Specifically, for T � D− the conductance G(ε0, T )
is given by (50) for symmetric barriers with an overall factor of λ. However, for
T � D− the transmission at the Fermi level falls off with decreasing T (Fig. 1)
and so does the conductance peak (Fig. 3b):

G(ε0, T ) =
λ(T/Ds)2α

(D−/Ds)2α + (2ε0/Ds)2
, (52)

which gives
Gp = λ(/D−)2α , w = Ds|Γ−(∆)|/Γ+(∆) . (53)

Thus, at small T � D−, the height of the conductance peak goes down as T
decreases, whereas the width of the peak does not depend on T any longer.
This kind of behavior of the resonance peak was predicted in [3]: Gp(T ) scales
as ρ2

e(T ), as for a single impurity. The role of asymmetry was emphasized and
expressions similar to (53) were obtained in [24]. However, the authors of [24]
do not distinguish between the scales D− and Ds.

3.2 Weak Barriers

Consider now the case of weak barriers, i.e., Dr1,2 � ∆. Naively one could
think that scattering on weak barriers cannot possibly yield a sharp peak of
conductance. Indeed, the transmission probability as a function of ε (Fig. 2)
does not have any peak at ε = ε0, in contrast to the case of resonant tunneling.
At high T � Dr, G(ε0, T ) is a weakly oscillating (with a period ∆) function of
ε0. The only difference with the non-interacting case is an enhanced amplitude
of the oscillations.

Let us show that in fact the interaction-induced vanishing of T(ε) at the Fermi
energy ε = 0 for T = 0 does lead to a narrow Lorentzian peak of G(ε0, T ) (see
Fig. 4), provided that T is low enough and the barriers are not too asymmetric.

Symmetric Barriers. Integration (47) of the transmission probability (45) for
symmetric barriers yields

G(ε0, T ) =
[
1 + (2πε0/∆)2 (Dr/T )2α

]−1
, (54)

which indeed describes a Lorentzian peak (Fig. 4a) with the height Gp = 1 and
the width

w = (∆/π)(T/Dr)α. (55)
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Fig. 4. Weak barriers: Conductance G (in units of e2/h) as a function of ε0 for sym-
metric (a) and asymmetric (b) barriers

It follows that the peak is narrow, w � ∆, provided that T � Dr. In the limit
T → 0, the width of the peak is infinitesimally small. Similarly to the case of
resonant tunneling, the resonance at ε0 = 0 remains perfect in the presence of
interaction at T = 0. At finite T , there is a small correction

1 −Gp ∼ (T/∆)2(Dr/T )2α . (56)

Equation (56) describes also the high-T behavior of Gp in the case of slightly
asymmetric barriers (see below).

Asymmetric Barriers. Introducing a weak asymmetry R− = |R1 − R2| �
R � R1,2, we get for T � δ−, where δ− is defined in (41):

G(ε0, T ) =
R2(T/Dr)2α

R2−/4 + R2(2πε0/∆)2
. (57)

The height and the width of the peak are

Gp = (T/δ−)2α
, w = (∆/2π)R−/R . (58)

Thus, the asymmetry leads (Fig. 4b) to vanishing Gp at T → 0 and the width
is seen to saturate with decreasing T , similarly to (53). It is worth noting that
the dependence of Gp on T is non-monotonic: Gp ∝ T 2α grows with increasing
T for T � δ−, continues to grow in the range δ− � T � w according to
1 − Gp ∝ T−2α, but goes down for w � T � ∆, where the correction behaves
similarly to the case of symmetric barriers, 1 −Gp ∝ T 2(1−α). The conductance
peak is narrow provided the asymmetry is weak, R− � R. If the asymmetry is
strong, R− � R1 + R2, the peak is completely destroyed.

4 Conclusions

In conclusion, we have studied transport of spinless electrons through a double
barrier. We have described a rich variety of regimes depending on the strength
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of the barrier, its shape, and temperature. We have developed a fermionic RG
approach to the double barrier problem, which has enabled us to treat on an
equal footing both the resonant tunneling and resonant transmission through
weak impurities. In the latter case, we have demonstrated how the interaction-
induced renormalization in effect creates a quantum dot with tunneling barriers
with a pronounced resonance peak structure. Moreover, we have shown that even
very weak impurities, for which the renormalized transmission coefficient does
not exhibit any peak, may give a sharp peak in the conductance as a function
of gate voltage, provided that the double barrier is only slightly asymmetric. In
contrast, the resonant structure is shown to be completely destroyed for a stron-
gly asymmetric barrier. All the regimes we have studied may be characterized
by three different types of behavior of the conductance peak height Gp and the
peak width w on temperature T : (i) for high temperature T � Γ (T ), Gp ∝ Tα−1

and w ∝ T ; (ii) for lower T , depending on the shape of the barrier (whether it is
symmetric or asymmetric), either Gp does not depend on T and w ∝ Tα or (iii)
Gp ∝ T 2α and w is constant. None of the regimes (i–iii) supports Gp ∝ T 2α−1

and w ∝ T , as proposed in [12]. Further experiments would be useful to resolve
the puzzle.
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in Metallic Nanostructures
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76021 Karlsruhe, Germany

Abstract. The electron transport across metallic nanobridges at low temperatures
and in good contact with electric leads is reviewed. The smallness of the samples in-
duces two phenomena which are different from macroscopic metals. First, interference
effects like universal conductance fluctuations and Aharonov-Bohm effect are observa-
ble as a result of quantum-mechanical phase coherence over the entire sample. Second,
interaction effects are considered, which are induced by a reduced screening of the car-
rier charges. Examples for these phenomena are discussed both at zero- and finite bias
voltages.

1 Introduction

The conductance of a macroscopic conductor is generally described by Ohm’s
law and is related to microscopic processes in the framework of the Boltzmann
equation. The conductance G can be written as a product of the geometry factor
and the material-specific conductivity

G =
A

L
· σ (1)

with A the cross section of the conductor, L its length and σ the conductivity,
which is an average local quantity. In the presence of scattering processes, the
electron movement is diffusive. Then, the conductivity can be related to the
mean free time τ between scattering events that affect the momentum state of
the carrier. Drude’s result is

σ =
ne2τDrude

m
(2)

with e the elementary charge, n the charge carrier density and m the effective
mass of the conduction electrons [1].

A different description has to be chosen when the sample is nanometer-sized.
To give a drastic example, the conductance of a single-atom contact of gold (see
Fig. 1) is close to the conductance quantum G0 = 2e2/h, which is a fundamental
constant. One might expect that a longer chain of gold atoms with several gold
atoms in a row will have a reduced conductance according to (1). Experiments
and theory have demonstrated that the conductance value is again very close
to G0 and depends only weakly on the exact geometry [2]. This surprising re-
sult indicates that the concepts to describe electron transport on the nanoscale

H.B. Weber, Interference and Interaction in Metallic Nanostructures, Lect. Notes Phys. 658, 185–
203 (2005)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Sketch of gold contacts with a single-atom cross section. The conductance of
both contacts is ≈ 2e2/h, independent of the length. This provides a drastic exam-
ple how electron transport at the nanoscale is completely different from macroscopic
physics (Ohm’s law)

are different from the macroscopic ones. Indeed, the conductance is frequently
described by the Landauer formula

G =
2e2

h

∑

i

τi (3)

which is a summation over i available modes with τi being the corresponding
transmission probabilities. This description essentially treats the electron trans-
port as a wave-like propagation, where electrons may access some propagation
modes and are either transmitted or reflected. In strong contrast to (1), the geo-
metry, the mean free path and the electron density are not explicitly included,
although they determine implicitly the conductance in a nontrivial way.

It turns out that the Landauer description is not only suitable for the single-
atom scale, but is also very useful on the meso scale in between macroscopic
and atomistic dimensions (greek: mesos = middle). When the sample is entirely
quantum mechanically phase coherent, the concept of ensemble averaging breaks
down, which is the base of the Boltzmann description. Discoveries made since
the 1980s showed that this happens at surprisingly large length scales, which are
typically around 1 µm in a metallic sample at low temperatures (T ≈ 1 K).

The present article describes interference and interaction effects in mesosco-
pic metallic conductors. First, the theoretical framework will be sketched, then
the focus will be on experimental phenomena. Whereas many groups world wide
have contributed to the research in this field, the phenomena will be explained
using experimental results we obtained over the last decade in Karlsruhe.

2 Conductance is Transmission

Consider a perfect conductor with length L (no impurities) which has a cross
section sufficiently small that only one current carrying mode is occupied. In
order to determine the conductance, it is connected to two reservoir-like leads.
This means that the electron system in each lead is in thermodynamical equi-
librium. Hence, the temperature and the electrochemical potential is perfectly
defined. The current across the conductor is basically the product of the number
of charge carriers, their velocity v, the elementary charge e. In a more accurate
quantum mechanical description this can be written as

I =
e

L

∑

k,σ

vk(fL(εk) − fR(εk)) (4)
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or for a long conductor, in which the k states are dense (the factor 2 appears
due to spin degeneracy):

I =
2e
π

∫
dk · vk(fL(εk) − fR(εk)) (5)

where fL and fR denote the Fermi-Dirac distribution function

fL,R =
1

1 + exp
(

E−µL,R

kBT

)

of the left and the right lead, respectively. The current is non-zero when a finite
voltage V is applied, which shifts the electrochemical potential µ by eV with
respect to the opposite side. When the transition to energy coordinates is desired,
the one-dimensional density of states comes into play, which is

ρ =
1
vk�

(6)

and thus the velocities exactly cancel and drop out of the calculation for the
current:

I =
2e
h

∫
dε(fL(εk) − fR(εk)), (7)

which results in the conductance

G =
2e2

h

∫
dε

(
−∂f

∂ε

)
. (8)

Hence, the conductance of a perfect single-mode one-dimensional wire connected
to two reservoirs has the above value which simplifies at zero temperature to
G0 = 2e2/h, which is the conductance quantum. It corresponds to the quantum
resistance of R0 = h

2e2 = 12.9 kΩ. It is remarkable that this result is independent
of the size (within the above-mentioned assumptions) and of the material. Note
that in the 3D case in the absence of scatterers zero resistance would be expected.

For the metallic nanosamples that are described in this chapter, the assump-
tion of the single-mode conductor is not appropriate. For this purpose, the con-
cept can be extended to the case of a many-mode conductor[3]. This is frequently
called the Landauer formalism: The conductor is considered as a scattering re-
gion, which is placed in between two reservoir-like leads. In the scattering region,
there are several input channels and several output channels (cf Fig. 2). Waves
which come from the left side are either backscattered in one of the left-hand
leads, or transmitted in one of the right-hand leads. Technically, the scattering
center is given by a transmission matrix (T matrix) for each energy. Its matrix
elements tnm relate a wave incoming from the left in channel n with probabi-
lity 1 to the outgoing wave leaving the scattering region along channel m with
the probability tnm. The incoming wave is thus distributed over all outgoing
channels or is reflected in one of the input channels such that current conser-
vation is respected. This matrix can in principle be calculated starting from a
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T

Fig. 2. The transmission matrix T distributes waves coming from the left reservoir via
input channels to outgoing waves to the right reservoir. The number of channels may
be different for both sides

Schrödinger equation, a procedure, which will not be discussed in this article
(see [4]).

Once the T matrix is known for each energy, the calculation of the con-
ductance is straightforward. The total transmission is given by a sum over all
transmitted amplitudes T =

∑
i

∑
j |ti,j |2 = tr(t†t). Hence, the conductance

reads

G =
2e2

h

∫
dε

(
−∂f

∂ε

)
tr(t†t) . (9)

At zero temperature, this simplifies to

G =
2e2

h
tr(t†t) . (10)

The eigenvectors of (t†t) are called transmission eigenchannels. In their basis,
the conductance formula simplifies to

G =
2e2

h

∑

i

τi (11)

with real eigenvalues τi which range between 0 and 1, representing the transmis-
sion probability of this mode.

We find again formulas similar to (8), but generalized to many modes. Within
this formalism, the conductance is the sum of transmission values, multiplied by
the conductance quantum. It is valid if the interaction between charge carriers
can be neglected. Because the incoming waves are simply redistributed to the
output waves and phase relations and the superposition principle are respected,
the formalism is particularly useful for describing interference effects in phase
coherent samples. For a more thorough treatment, [4] is recommended. In Sect. 5
we will discuss interaction effects, which are not tractable with the Landauer
formalism.

3 Quantum Interference Experiments

3.1 The Mesoscopic Aharonov–Bohm Effect

If we consider a coherent metallic bridge with mesoscopic dimensions (for ex-
ample a copper bridge, which is 50 nm wide and thick, 1000 nm long with a
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A B

arm 1 

arm 2

Fig. 3. A mesoscopic Aharonov Bohm ring: When an electron comes from the left hand
side, it splits at A into two partial waves, which propagate along the two arms. In each
arm, many scattering processes change the phase in a deterministic, but random way.
At B, both waves interfere according to their relative phase

resistance of R = 20 Ω), its resistance will roughly be determined by the clas-
sical formulas ((1) and (2)) and the quantum mechanical corrections will be
rather small. In order to access the quantum effects experimentally, a further
tuning parameter is required. In a semiconductor device this can be given by
electrostatically induced changes of the geometry (see also the contribution of
Jürgen Weis in this book)). In the case of a metallic sample, such changes may be
induced by the magnetic field. The following experiment will elucidate the basic
mechanism. Consider a metallic conductor, which splits into two arms (Fig. 3).
Charge carriers which come from the left may choose one of the arms 1 and
2 with probability T1 or T2, respectively. In a quantum mechanical description
electrons are considered as waves and split at point A into two partial waves
which propagate along the two arms. At point B these partial waves rejoin and
are subject to interference. Following the last section, the interference will af-
fect the transmission and consequently the conductance. The amplitude of the
reconvened beam will depend on the relative phase φ according to

TA→B = |T1 + T2|2 = |T1|2 + |T2|2 + 2 |T1| |T2| · cosφ (12)

where φ is unknown, because it depends on many microscopic details, which
add random phases in each arm. However, we know from quantum mechanics
that the interference between trajectories can be altered by the presence of elec-
tromagnetic fluxes. Aharonov and Bohm have demonstrated theoretically that
for any pair of trajectories that interferes with a transmission probability T in
the absence of an electromagnetic field, the probability changes to

T ′ = T exp
(
ie

�

∫
(Φeldt− Adr)

)
, (13)

where Φel and A are the potentials of the electric field E = ∇Φel and magnetic
field B = ∇ × A, respectively 1. As a consequence, the magnetic flux Φmagn =

1This can be deduced from the Schrödinger equation when the usual substitution
for the momentum p → p − eA is carried out [5].
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Fig. 4. SEM pictures of metallic Aharonov-Bohm rings. a: two-terminal setup, b: four-
terminal setup, which will be discussed in Sect. 4.1.

∫
Bds in between the trajectories affects immediately the quantum mechanical

phase φ which is ruling the interference and can continuously be tuned by the
magnetic field B

∆φ(B) =
e

�

∮
Adl =

e

�

∫
Bds = 2π

Φmagn

Φ0
(14)

where Stokes’ theorem was applied. For simplicity, B is usually chosen perpen-
dicular to the ring plane and then Φmagn = πr2B. The fundamental constant
Φ0 = h/e = 4.15·10−15 Tm2 is called the flux quantum. Remarkably, the effect is
not caused by the field in which the electron is moving, but by the magnetic flux
which is enclosed by the two paths. An equivalent experiment with free electrons
has been proposed by Aharonov and Bohm in 1959 [6] and being performed by
Chambers 1960 [7]: An electron beam was used in a double slit experiment with
a coil in between the two slits, which provided a magnetic flux (in the space bet-
ween the two partial beams). By constantly increasing the current in the coil,
the interference pattern behind the double slit could be continously shifted.

Here, the same physics is recovered in a solid state device with conduction
electrons. We have already seen that the transmission probability is intimately
linked to the conductance and therefore we would expect that also the conduc-
tance depends sensitively on the interference term and thus on the applied flux.
An experiment that displays these features (first carried out in 1984 [8]) must
provide the following prerequisites: (i) A ring-shaped sample has to be patter-
ned, which is micrometer-sized in order to allow for a full phase-coherence at
low temperatures (T < 1 K). Here, a ring diameter of 1 µm has been chosen.
(ii) The arms of the ring should be rather narrow to define the cross-section of
the ring sufficiently well (the results of a finite aspect ratio are discussed be-
low). For our experiment, w = 80 nm were reliably achievable. (iii) The ring
has to be contacted by two leads within the phase coherent area (Fig. 4a); the
case of a four-terminal measurement displayed in Fig. 4b is described in Sect.
4.1. Such an Aharonov-Bohm (AB) ring can be produced by e-beam lithography
and the lift-off technique. Figure 4a shows such a copper sample on a scanning
electron micrograph. The resistance of this particular sample is R = 55.6 Ω,
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Fig. 5. The conductance oscillations δG = G(B) − 〈G〉 in an Aharonov-Bohm ring
induced by the magnetic field B. The upper data set are raw data with both aperiodic
and periodic fluctuations, the lower data set after narrow-band filtering

corresponding to a conductance of G = 464 e2

h . Figure 5 (upper data set) shows
the fluctuations of the conductance obtained with this sample at T = 20 mK
as a function of the magnetic field. The signal is fluctuating. Only a minor part
of these fluctuations is electronic noise, the dominant part is reproducible when
the measurement is repeated (of course, some electronic noise is also present).
Both periodic and aperiodic fluctuations (so called universal conductance fluc-
tuations, see below) appear. When an appropriate narrow-band filter procedure
picks out the periodic signal (lower data set in Fig. 5), a long-range periodicity
can be found, with some modulation on top. According to (14), the signal is
periodic in the flux and therefore the basic “frequency” of G(B) depends on the
area S = πr2 of the ring:

Φ0 = BC · S . (15)

In order to enclose one flux quantum Φ0 = B·S in the ring, a field of BC = 62 mT
is needed in this case. Figure 5 shows also some modulation or beatings, which
indicate that the frequency is not sharply assigned. This is a consequence of
the finite width of the ring: The area in between two paths in the upper and
lower ring is not accurately defined. For example, an electron which is travelling
along the outermost possible path and one which is travelling the innermost path
are differently affected by the magnetic field. An important finding is that the
amplitude of the oscillation in a metallic AB-ring with many open paths is on
the order of G0 = 2e2/h, no matter of the value of conductance. Whereas in a
single-mode conductor with a conductance G ≈ G0 this may be a large effect,
in a metallic nano-ring with many open channels, the effect is small, but not
negligible.

3.2 Universal Conductance Fluctuations

Now we consider a metallic nanobridge as schematically shown in Fig. 6. Again,
we assume phase coherence over the entire bridge, which is connected to two ideal
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L

w

B

A
B

Fig. 6. A mesoscopic bridge in between reservoir-like leads. Electrons coming from
point A may propagate along different diffusive trajectories. When they rejoin in point
B, the quantum mechanical phases of the two trajectories have to be respected

leads. Conduction electrons travelling along the bridge can again take different
paths according to the diffusive motion. In Fig. 6, only two of such paths are
drawn for simplicity. An electron starting at point A splits into two partial waves
which travel along different paths and rejoin in point B, where again interference
is important. In analogy to the AB ring experiment, the relative phase can be
tuned by an external magnetic field. However, the geometry is not well defined,
many paths are affected simultaneously and for the conductance pattern no
periodicity can be expected.

Figure 7 displays conductance data obtained with several of such bridges 2.
Similarly to Fig. 5, there are reproducible fluctuations observable as a function
of the magnetic field. In this case, however, only aperiodic fluctuations can be
detected. In order to characterize such curves, two statistical values can be ex-
tracted from G(B): the amplitude of the fluctuations δG = 〈G(B) − 〈G〉〉 and
a correlation field BC , defined as the width (HWHM) of the autocorrelation
function

F (∆B) =
1

2B0

∫ B0

−B0

δG(B′)δG(B′ +∆B)dB′ . (16)

BC characterizes the magnetic field scale on which the conductance changes
significantly. It corresponds in this respect qualitatively to the period of the
AB-fluctuations.

In analogy to the AB oscillations, the amplitude is δG ≈ 0.25 e2/h, irre-
spective of the conductance of the sample (this is why they are called universal
conductance fluctuations). For the correlation length, a simple argument yields
a qualitative value: the two paths shown in Fig. 6 include an area which is on the
order of l ·w. Imagine the bridge is twice as wide, two such typical paths would
include twice as much area and consequently twice as much flux. So, within a
factor C of the order of one,

Bc = C
Φ0

wl
(17)

gives a reasonable estimate of the field scale on which the correlations are com-
pletely destroyed and new correlations are randomly established. Figure 7 shows

2The first experimental observation of this effect in metals was reported in 1984 [9]
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Fig. 7. Universal conductance fluctuations recorded with metallic nanowires of different
widths (from top to bottom w = 45, 80, 100, 120, 160, 240, 320 nm). One can clearly see
that the fluctuation width is reduced for larger w, whereas the fluctuation amplitude
δG is unaltered. Note also the symmetry G(B) = G(−B)

a systematic investigation of bridges with different width [10]. One can see im-
mediately that the average fluctuation amplitude is very similar, whereas the
fluctuation width on the field scale gets broader for narrower bridges. In Fig. 8,
the correlation fields BC for bridges with different widths w are determined
statistically and qualitatively confirm equation (17).

For a given sample, the conductance fluctuations generate a pattern as a fun-
ction of the magnetic field B, which is specific for this sample. But a nominally
equivalent sample with the same geometry will have a different pattern. This
difference arises due to the importance of microscopic details, in particular the
position of the scattering centers which determine the diffusion paths. Allowing
for some microscopic reorientation of defects in a given sample (for example by
warming it up and recooling it thereafter) is often sufficient to alter the con-
ductance pattern substantially. If one would measure the zero-field conductance
of a large ensemble of bridges with identical geometry, the variation of the con-
ductance is expected to show the same statistical fluctuations δG ≈ 0.25 e2/h.
Variation of the magnetic field for a given sample or alternatively investigating
many samples at a fixed field value provide two different ensembles which both
explore the phase space randomly. According to the ergodic hypothesis the same
statistical variance is then expected [11,12]. Another parameter which randomly
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Fig. 8. A statistical evaluation of the data displayed in Fig. 7 yields a correlation field
BC for bridges of different width. The straight line confirms that BC ∝ 1/w

probes the phase space for a given sample is the Fermi velocity of the conduction
electrons. Related experiments are described in the next section.

4 Interference out of Equilibrium

The conductance measurements described so far were carried out at small vol-
tages: the excitation energies provided by the voltage was comparable to the
thermal broadening eV ≈ kBT . This is the equilibrium regime, in which the
voltage does not play an important role. When the energy exceeds kBT , the
voltage can be a relevant energy scale. Some examples may elucidate the physics
involved.

4.1 Conductance Fluctuations at Finite Voltages

Applying a voltage to a nanobridge means shifting the electrochemical potential
of the two leads by eV with respect to each other (cf (5)). Instead of charac-
terizing the conductance I/V , it is more convenient to look at the differential
conductance dI/dV . The meaning of this physical observable can be seen in
Fig. 9: As a consequence of the imbalance of the electrochemical potentials, cur-
rent can flow from occupied states in the left reservoir to unoccupied states at
the right reservoir at all energy levels between µL and µR. When the applied
voltage V is further increased by δV , the current response is increased by δI.
The ratio between these values δI/δV is the differential conductance: In the sim-
ple case, this corresponds to the transparency of the additionally opened energy
level. But in some cases the current channels which are already active are alte-
red by the increase of the voltage. Then, a slight increase of V may affect the
transparency of all levels.
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Fig. 9. When a voltage is applied to a nanostructure (not shown) in between two
reservoir-like electrodes, the two electrochemical potentials µL and µR of the leads are
shifted with respect to each other by eV . Electrons from occupied states (shaded areas)
in the left lead can flow into unoccupied states in the right lead. When the voltage is
slightly modified by dV , the current correspondingly varies by dI. The differential
conductance at a given voltage V is resulting as dI/dV (V )

Experimentally, the differential conductance is often measured by a modula-
tion technique. A small excitation voltage Vexc(comparable to kBT/e) is added
to the bias voltage V0. The current response has an AC component which is
proportional to the differential conductance.

V (t) = V0 + Vexc sin(ωt) (18a)
I(t) = GV0 + dI/dV Vexc sin(ωt+ δ) . (18b)

The AC current response can be measured with good resolution using lock-in
techniques.

Beyond which voltage does the physical picture change? The key issue for the
interference experiments is that the momenta and the corresponding wavelengths
for the various energy levels in Fig. 9 are different. When we look at waves with
different wavelengths with a defined phase relationship, they will run out of
phase after a given time τph. If the time τC needed to traverse the sample is
shorter than τph, the interference pattern will only slightly be altered. If it is
larger, then one part of the electrons will be incoherent to another part on their
diffusion along the nanostructure. Expressed in terms of energies, the length of
the sample implies an energy scale EC = h/τC = hD/L2, which is also called the
Thouless energy. As long as eV is smaller than this energy scale, all conduction
electrons are phase coherent. If, however eV exceeds the Thouless energy EC ,
the electrons are partially incoherent to each other. If the applied voltage is, for
example V = N · EC , then N incoherent channels at energy levels will cause
fluctuations. The incoherent superposition will then scale with the number N1/2

and consequently with the voltage U1/2. This has been predicted by Larkin and
Khmel’nitskii 1986 [13].

The consequences can be seen in an interference experiment at finite voltage,
for example in an AB-ring. In our experiment, we vary the current and record
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Fig. 10. The amplitude of Aharonov-Bohm oscillations in the differential resistance in
a mesoscopic ring as a function of the applied bias current. One can see the square-root
increase up to a level where incoherent processes set in and destroy the phase coherence
(see inset)

the conductance oscillations3 [14]. The Fourier amplitude that describes the am-
plitude of the oscillatory part increases with the square root of IDC (Fig. 10).
Tuning the currents higher, an additional trivial effect comes into play: heating
destroys the phase coherence (see inset). When we limit ourselves to the re-
gime where heating can be neglected, quantum interference becomes visible as
a function of finite bias voltages.

These curves are gained by evaluating many data sets G(B), each recorded
at a given bias current for a magnetic field sweep. If we focus our attention onto
one of such data sets, an interesting fundamental question arises, which is based
on the combination of two arguments: (i) We have seen that the conductance
is proportional to the cosine of the flux and consequently G ∝ cos(B/BC + α),
with a zero-field phase of alpha which naively can be assumed to be a random
value due to the interference of two partial waves (cf Fig. 3). (ii) A very general
symmetry argument, which is based on Onsager’s relation [15], tells us that for
a two-terminal measurement (i.e. within the phase coherent region there are
two reservoir-like leads), the conductance should not change when the time is
reversed [16]. One can easily rationalize that a time reversal would change the
magnetic field on the one hand, but the current and consequently the voltage
along the sample on the other hand, therefore the conductance G = I/V should
not be affected. Hence, one expects

G(B) = G(−B) . (19)
3Due to technical limitations, the leads were rather far apart from the ring and

thus the voltage applied is not accurately defined. Our results compare to the Larkin-
Khmel’nitskii results only qualitatively.
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Fig. 11. Filtered Aharonov-Bohm oscillations in a two-terminal setup for different
applied bias voltages. At zero field, either a maximum or a minimum is observable,
with some flat transition regions. This symmetry is a consequence of Onsager’s relation

Combining (i) and (ii), it can easily be deduced that G ∝ cos(B/BC) or G ∝
− cos(B/BC), any other phase α is not in agreement with time reversal symme-
try.

Our approach to address this phenomenon experimentally is to vary the
current in an AB ring in order to induce a random change in the interference
pattern and to study the dI/dV (V,B) = GV (B) traces with respect to their zero-
point symmetry [17]. Figure 11 shows such data with a mesoscopic AB ring. The
plot shows a number of dI/dV (B) curves recorded at various bias current values,
which are in this context only a parameter to vary the interference patterns
randomly. The data are filtered such that only the periodic part is visible.

It can be seen that for all bias currents the differential conductance GV (B)
shows a symmetry with respect to B = 0. Whereas in the uppermost set there
is a minimum at B = 0, this minimum is broadened at higher currents and is
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converted to a maximum at B = 0 for I = 0.36 µA and then again to a minimum
at I = 6.8 µA. Only slight asymmetries can be observed 4. For comparison, a
ring was manufactured for which two current leads and two voltage leads are
present within the phase coherent area (see Fig. 4b). In a classical system this
setup would allow for the accurate determination of the conductance of the
ring only (and eliminates effects in the leads). In a mesoscopic device, a four-
terminal measurement remains sensitive to details in the leads which are within
the phase coherent area, because they affect the wave pattern in the sample.
In our example, the above-mentioned symmetry is not valid and replaced by a
more complicated relationship5. Data collected with the four-terminal AB ring
indeed show that the symmetry from (19) is absent and the phase shift α has
arbitrary values.

The same symmetry rules hold for the universal conductance fluctuations.
For the two-terminal measurements in Fig. 7 it can be seen that the fluctuations
of all data sets are symmetric with respect to magnetic field inversion. Again, in
a four-terminal measurement they are not symmetric.

5 Interaction Effects in Nanobridges

For the interference effects described so far, electrons are considered as waves
and the electrostatic interaction between the charge carriers can be neglected.
In a (macroscopic) metal, the electrons are indeed only weakly interacting due
to screening by the surrounding charge carriers. This very efficient suppression
of the long range Coulomb interaction leads to a physical picture of a metal at
low temperatures in which the electron system is consisting of quasi indepen-
dent, only weakly interacting quasiparticles, which are excitations of the Fermi
liquid ground state [1,19]. For a perfect crystalline material, the eigenfunctions
are k states (plane waves), which rearrange dynamically to screen any charge
perturbation. This can, for example, be calculated on the textbook level by the
Lindhard approximation, which yields a time- and space dependent dielectric
function ε(k, ω).

When impurities and scatterers are present in the metal and the electronic
motion is diffusive, the k states are no longer eigenstates of the system. It turns
out that many properties of a metal remain unaffected by this change, but at
very low temperatures a rather drastic change is induced by the diffusive nature
of electron motion. The reason is that diffusion slows down the electrons on long
distances considerably. This is formally described by a propagator which is called

4These asymmetries presumably arise from experimental imperfections
5For a four terminal device, the symmetry relation Gmn,kl(B) = Gkl,mn(−B) is

valid, where the permutation of indices reflects a permutation of the current leads
m, n and voltage leads k, l[18,16]. Of course, the two-terminal relationship (19) is just
a special case of this more general rule. The simplification in the two-terminal case
is due to the fact that the tensorial character of the conductance has no importance,
whereas it matters in the four-terminal case.
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the Diffuson
D(q, ω) =

1
(−iω +Dq2)τ

(20)

with q, ω being the difference in the momenta and frequencies of two interacting
particles, respectively. D(q, ω) diverges for q, ω → 0 and enters in a perturbative
calculation of the density of states (DOS) and the conductance, even for macros-
copic samples, causing temperature- and voltage dependent corrections to these
observables.

As a consequence of the diffusive motion, two particles with similar momen-
tum will follow very similar trajectories and will consequently stay much longer
nearby than plane waves, resulting in an enhancement of interaction. A second
consequence is the reduced efficiency of screening. This can easily be understood:
Imagine a charge suddenly appearing in the metal. The surrounding electrons
have to rearrange until the probe charge is screened. For crystalline systems, the
screening by the conduction electrons is fast. For a diffusive system, the elec-
trons are hindered by the slower diffusive motion and can rearrange only with
a retardation around the probe charge. Hence, the dynamical screening is less
efficient. As a consequence, the interaction is increased compared to the case of
a perfect crystal.

These two mechanisms increase the interaction in a diffusive metal. Let us
consider an elementary excitation from the usually assumed metallic ground
state: the generation of an electron hole pair. Whereas in a perfect metal, due
to screening, such an exciton experiences a very weak attractive interaction, in
a diffusive conductor it is stabilized by the Coulomb interaction between the ne-
gative charge of the electron-like and the positive of the hole-like quasiparticle.
Hence, this excited state may be even lower in energy than what we assumed to
be the ground state. As a consequence the resulting ground state of the inter-
acting electron system is a many-body state which is at least partially depleted
around the Fermi edge (these states have slightly moved away from the Fermi
energy in both directions because the “excited” states are more favorable).

The expression for the DOS correction has to be calculated according to the
dimensionality of the sample, which is not of interest at this point. A detailed
derivation is given in [20]. Here we want to focus on effects which appear in
the conductance of metallic nanobridges. If they are sufficiently small6, they
are effectively zero dimensional. The influence of the diffusion correction can be
observed both in the temperature dependence and in the voltage dependence of
the conductance.

For the experiment, a small bridge is embedded in between two large and
thick reservoir-like leads [21]. The leads are thick and bulky in order to guarantee
reservoir-like properties albeit the heat generated by the current. Figure 12 shows
an SEM picture of such a sample.

A first manifestation of interaction effects can be detected in the temperature
dependence of the conductance. Figure 13 shows conductance data G(V = 0, T )

6The sample is zero-dimensional with respect to the discussed effects, when all
scales are smaller than the thermal diffusion length LT =

√
hD

kBT
.
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Fig. 12. SEM image of a nanobridge designed for non-equilibrium measurements. The
bulky electrodes (thickness 700 nm) serve as reservoir-like leads and conduct the arising
heat away from the nanobridge. The bridge itself (width and length 80 nm, thickness
10 nm) is in good contact with the leads
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Fig. 13. Zero-bias conductance of a metallic nanobridge, showing a logarithmic depen-
dence of G on T (cf (21))

as a function of temperature on a semi-logarithmic scale. The straight line indi-
cates a logarithmic temperature dependence.

G(0, T ) = Gbackground + b · ln(T/1K ) (21)

remarkably, b ≈ 0.3 e2/h for many samples with different properties. In metallic
films, there are several effects which are known to cause logarithmic temperature
dependencies: weak localization [22], electron-electron interaction [20] and the
Kondo effect [23] when magnetic impurities are present. In this case, weak loca-
lization is absent due to the small lateral size of the bridge and Kondo impurities
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Fig. 14. Raw data of the differential conductance as a function of voltage for diffe-
rent temperatures. For lower temperatures, a narrow anomaly occurs, which is due to
interaction effects

can be excluded because the behavior described by (21) is unaffected in strong
magnetic fields.

Further information is gained when the differential conductance is measured.
Figure 14 is displaying conductance data of the same sample as a function of
the applied voltage, recorded at various temperatures. The anomaly is rather
weakly affecting the conductance, except at rather small voltages, where a dip
in G(V, T = const) = dI/dV (V ) appears. This reminds us of the dip in the
DOS due to electron-electron interaction. It can be seen in Fig. 14 that this dip
gets more pronounced (both deeper and narrower) when low temperatures are
reached. Qualitatively, the voltage dependence and the temperature dependence
are similar for many interaction effects, because both finite voltage and finite
temperature provide excitations around the Fermi edge. As a natural choice we
will look at the data as a function of eV/kBT , because this combination plays
an important role in any statistical description of the electron system.

For this purpose, we subtract the zero-bias conductance from each curve, the
result is normalized by the factor b deduced from (21), and the resulting data is
plotted as a function of eV/kBT , where T is the temperature for each data set.
All curves collapse onto a single curve, which is displayed in a semi-logarithmic
plot in Fig. 15. Following this procedure, we can write a down a scaling law

G(V, T ) −G(0, T )
b

= H(eV/kBT ) (22)

with a function H, which is universal in the sense that it appears in many
different samples and does not depend on the material, the conductance or the
exact geometry as long as it is zero dimensional. We can see that H ≈ 0 for
eV < kBT , which reflects the fact that the voltage is not relevant when it is
within the thermal smearing range. For eV > kBT , H follows a straight line,
which corresponds to a logarithmic voltage dependence. For the data sets at
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Fig. 15. Scaling plot of the data shown in Fig. 14. All data collapse onto a single curve.
The circles indicate a theory which includes electron-electron interaction effects

lowest temperature, this logarithmic shape persists up to eV/kT ≈ 100, whereas
for higher temperatures, the curves start to deviate earlier from the common
scaling curve due to additional effects at higher voltages. The open circles in
Fig. 15 are theoretical calculations for the diffusion correction to the conductance
based on a non-equilibrium Green’s functions approach [21,24] . The theory
results in the same scaling law (22), a very similar value for b and the scaling
curve fits excellently and without any free parameter to the experimental data, as
can be seen in Fig. 15. The dip in the conductance corresponds to the diffusion
correction which suppresses the DOS at the Fermi level, but also affects the
propagation of charge carriers.

This behavior was also observed in metallic islands which are connected to the
electric leads by high-resistance metal strips [25] and, similarly, but with a diffe-
rent law also in carbon-nanotube contacts [26], which have conductances much
smaller than e2/h. The common origin of these phenomena is the interaction bet-
ween the charge carriers, which have to propagate across the nanojunctions while
they interact with the other electrons which already occupy the nanobridge. This
zero-bias anomaly is hence a precursor of Coulomb blockade, occuring at high
transparency. Coulomb blockade, which appears in islands which are connected
to the leads by tunnel barriers with G � e2/h may suppress the conductance
entirely below a certain threshold voltage (see also the contribution of Jürgen
Weis in this book). The interaction effects described in this section provide a
correction which is small, but still present, when G � e2/h.
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Ab Initio Calculations of Clusters

Florian Weigend
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76021 Karlsruhe, Germany

1 Introduction

Both ab initio quantum chemistry and the investigation of atomic or molecular
clusters are fields of active research nowadays. This contribution presents on
one hand some advances in making programs efficient for calculations of large
systems, on the other it shows some fruitful combinations of calculated and
experimental results. Respecting the context of the CFN summer school, it is
addressed rather to non-quantum chemists, to give an insight into contemporary
quantum chemical possibilities in calculations of clusters as well as to show the
strengths and weaknesses of several methods. In the following chapter the very
basics of quantum chemistry are discussed (as far as necessary for what follows),
next some details of implementation to increase efficiency of HF, DFT and MP2
algorithms are shown. In the last section three different applications of quantum
chemical methods for atomic and for molecular clusters are presented. Firstly,
as an example for the HF+MP2-method, the determination of the structure and
bonding situation in negatively charged clusters of water molecules is discus-
sed, secondly a similar study of anionic gold clusters, but this time by means
of density functional theory (DFT) is presented. In both cases, by combining
theory and experiment results are obtained which would not have been found by
calculations alone or only by experiments. The last application presented here is
a DFT study on clusters of magnesium (up to Mg309), focussing on the validity
of the simple models of electronic and atomic shells leading to ‘magic’ atom and
electron numbers.

2 Quantum Chemical Methods

2.1 Schrödinger Equation, Born-Oppenheimer Approximation

Quantum chemistry simply means solving the stationary Schrödinger equation

ĤΨ = EΨ (1)

for a system of many (interacting) electrons and nuclei. By using the Born-
Oppenheimer approximation, i.e. by keeping the nuclei at fixed positions, this
means solving (1) for many (interacting) electrons in the potential of the nuclei.
As a consequence, the energy of a system shows a parametric dependence on
the positions of the nuclei, defining the so-called potential hypersurface. Points

F. Weigend, Ab Initio Calculations of Clusters, Lect. Notes Phys. 658, 205–219 (2005)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2005
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of interest usually are local minima of this surface, i.e. points, where the first
derivative (with respect to all nuclear displacements) of the energy is zero (and
the second derivative, the curvature, is positive). A convenient way to find local
minima is to calculate energy and gradients of the energy (i.e. forces) repeatedly
and to relax the positions of the nuclei due to these gradients, until a local
minimum is reached.

Let us next discuss how to solve the Schrödinger equation for a system of
interacting particles in presence of the external potential of the nuclei, i.e. for
the electronic Hamiltonian

H = −
N∑

A

n∑

α

Zα

|RA − rα| − 1
2

n∑

α

∇2
α

︸ ︷︷ ︸
hα

+
n∑

α

n∑

β>α

1
|rβ − rα| . (2)

N is the number of nuclei A (charge ZA), n the number of electrons α, R and
r are the respective distances (in atomic units). The first term is the potential
energy of the electrons, the second one the kinetic, and the last one describes the
electron-electron interaction, which prohibits a straightforward exact solution of
(1). Thus one has to look for approximate solutions.

2.2 Hartree–Fock Theory

In absence of the third term in (2) the exact solution of (1) would be a Slater
determinant. Nevertheless, also in presence of the third term one can use a
Slater determinant as a trial function for the wave function and get the best
possible energy by the variation principle. In this way one obtains the Hartree-
Fock equations

[

h(α) +
∑

i

(Ji(α) −Ki(α))

]

︸ ︷︷ ︸
F (α)

ϕi(α) = εi(α)ϕi(α) . (3)

The two-electron operator (1/rαβ) is replaced by the Coulomb operator J , de-
scribing the interaction of electron a with the averaged field of the n − 1 other
electrons, and by the exchange operator K, as a consequence of the Pauli princi-
ple. Together with the one-electron part h they build the Fock operator F . As F
depends on the molecular orbitals ϕ, (3) has to be solved iteratively. The mole-
cular orbitals ϕi = |i〉 are expanded in terms of atom-centred (usually Gaussian
type) basis functions |m〉

|p〉 =
∑

µ

cpµ|µ〉 , (4)

which leads to the Hartree-Fock matrix equations, that can be efficiently solved
by computers yielding the coefficients c and thus the Hartree-Fock wave function



Ab Initio Calculations of Clusters 207

ΨHF. The expectation value of the exact Hamiltonian (not that of the Fock
operator) is the Hartree-Fock energy:

EHF = 〈ΨHF|H|ΨHF〉
= Dνµhνµ︸ ︷︷ ︸

E1

+ 1
2 (νµ|κλ)DνµDκλ︸ ︷︷ ︸

EJ

− 1
2 (νκ|µλ)DνµDκλ︸ ︷︷ ︸

EK

. (5)

The integrals (νµ|κλ) describe the electron-electron interaction

(νµ|κλ) =
∫
dr1dr2ν(r1)µ(r1)

1
|r1 − r2|

κ(r2)λ(r2) (6)

and D is the density matrix, i.e. the matrix representation of the density in the
basis |µ〉

Dνµ =
∑

i

nicνicµi . (7)

ni denotes the occupation number of orbital |i〉. The Hartree-Fock method is
usually applicable to main group compounds. Errors in equilibrium distances
here amount to some pm, calculated IR frequencies are ca. 10% too large, which
is in line with overestimated binding energies. It is not suited for use on metallic
systems or for main group compounds containing extremely delocalised electrons.
The computational costs for this procedure formally increase as N4 (N is a
measure for the size of the molecule), as in (6) one has four indices running
over all (atom-centred) basis functions. For larger systems many integrals are
insignificant, which can be used to achieve an asymptotic scaling behaviour of
N2.

2.3 Deficiencies of the HF Method, Electron Correlation

The Hartree-Fock equations were derived using the variational principle yiel-
ding a mean-field description for the electrons. The variational principle has the
consequence that the HF energy is always higher than the exact energy of the
system. This energy difference is called the correlation energy.

Ecorr = Eexact − EHF (8)

It has its origins in the mean-field character of the HF solution, as can be illu-
strated by the following example. Let us consider a very simple many-electron
system, the He-atom containing a nucleus and two electrons. We keep one elec-
tron fixed (at a distance R to the nucleus) and look for the probability of finding
the second one on a sphere of the same radius. In the Hartree-Fock picture this
probability is constant all over the sphere, as the second electron “senses” only
the mean field of the first electron. In fact, the probability of finding the second
electron is reduced in the vicinity of the first electron by the coulomb repulsion
of the two electrons, which means that the motion of the two electrons is not
uncorrelated, but that they are able ‘to avoid each other’, leading to a lower
total energy.
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To account for this effect one can in principle, do two different things. On the
one hand one can perform a HF calculation and correct the errors afterwards
(e.g. by a perturbative correction) on the other one can directly modify the
Hamiltonian in an appropriate way using density functional theory.

2.4 Møller–Plesset Perturbation Theory

By analogy to the correlation energy, (8), a perturbation operator V is defined
as the difference between the exact Hamiltonian and the Fock operator

V̂ = Ĥexact − ĤHF =
∑

α<β

1
rαβ

−
∑

α

{
Ĵ(α) − K̂(α)

}
. (9)

By insertion of H = HHF + V and Ψ = ΨHF + λΨ1 + ... in the Schrödinger
equation one gets a set of equations and by expanding the first order perturbed
wave function Ψ1 in terms of excited Hartree-Fock wave functions one finally
obtains the second order perturbed energy, EMP2 (the first order is already
included in (5))

EMP2 =
∑

iajb

tab
ij (ia|jb) , tab

ij =
∑

iajb

2 (ia|jb) − (ib|ja)
εi + εj − εa − εb

(10)

i and j denote molecular orbitals that are occupied in the HF wave function
and a and b denote unoccupied ones. The above procedure yields excellent re-
sults (even accounting for dispersive interactions), when Hartree-Fock already
provides a good description, but if HF fails, MP2 will fail, too. Note that the
denominator of (10) contains energy differences of occupied and unoccupied or-
bitals; thus this procedure will fail for systems with a small energy difference
between the highest occupied and the lowest unoccupied orbital (which is ty-
pical for metallic systems). Furthermore, for calculation of EMP2 the electron
interaction integrals have to be transformed into the basis of the molecular or-
bitals, leading to an N5 scaling behaviour.

2.5 Density Functional Theory

A computationally much more economic way to account for effects of electron
correlation is given by DFT methods. To keep matters as simple as possible, just
replace in (5) the Hartree-Fock exchange part, EK, by an exchange-correlation
energy, EXC, which can be expressed as a functional of the electron density
ρ = |Ψ |2

EXC =
∫
f(ρ(r),∇ρ(r), ...)d3r = k

∫
ρ(r)

4
3 d3r

︸ ︷︷ ︸
Dirac

+ ... (11)

Unfortunately the exact form of EXC is known only for the free electron gas
(Dirac exchange). Much effort was and is spent on developing functionals suited
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for molecules; well established and widely used is that of Becke (for exchange)
and Perdew (for correlation), BP86 [1,2].

DFT is an economic way to calculate electronic structures including corre-
lation effects. As Coulomb integrals have to be evaluated as in HF, the scaling
behavior is the same (as long as no ‘tricks’ are applied, see below). For main
group compounds DFT is nearly as good as HF+MP2, for (large) transition
metal compounds, and in particular for metallic clusters, there currently is no
reasonable alternative to DFT.

3 Program Developments

The first calculations on metallic clusters were done in the late 80s, e.g. Li10 (30
electrons) or Na9 (99 electrons). Nowadays one is able to treat systems with ca.
9000 electrons (Ga309) on a single PC. If one takes into account that for large
systems DFT scales as N2, this means an increase of efficiency by a factor of ca.
104, which of course can partly be put down to the rapid increase in the power of
computers, but also is a result of the hard work spent on making programs more
efficient. As an example, the application of the RI-approximation to increase the
efficiency of DFT, HF and MP2 is discussed with several additional methods
mentioned at the end.

3.1 RI Approximation

The most demanding step in HF, DFT or MP2 calculations is the evaluation (and
the transformation) of the electron-electron integrals (6). By using the following
method the computational costs can be enormously reduced [3]. Let us expand a
product of basis functions (Gaussian functions) in a series of so-called auxiliary
basis functions P (r)(also Gaussian functions)

ρνµ(r) = ν(r)µ(r) ≈ ρ̃νµ(r) =
∑

P

cPνµP (r) . (12)

To determine the expansion coefficients we require the Coulomb self-interaction
of the error of the expansion to become minimal:
∫

{ρ̃νµ(r1) − ρνµ(r1)}
1

|r1 − r2|
{ρ̃νµ(r2) − ρνµ(r2)} dr1dr2 = min . (13)

This leads to
cPνµ =

∑

Q

(νµ|Q)(Q|P )−1 (14)

and finally to

(νµ|κλ) ≈ (νµ|κλ)RI =
∑

P

cPνµ(P |κλ) =
∑

QP

(νµ|Q)(Q|P )−1(P |κλ) , (15)

which is formally similar to inserting the resolution of the identity (RI).
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This can be used for a more efficient calculation of the Coulomb part of the
Fock matrix [4,5]. In a conventional algorithm the evaluation of the Coulomb
matrix

Jνµ =
∑

κλ

(νµ|κλ)Dκλ (16)

requires an N4 step for the calculation of the integrals and one more N4 step
for the contraction with the density matrix. Using the approximated integrals
instead of the exact ones, gives

JRI
νµ =

∑

κλ

∑

P,Q

(νµ|Q) (Q|P )−1 (P |κλ)
︸ ︷︷ ︸
N2Nx

Dκλ

︸ ︷︷ ︸
N2Nx︸ ︷︷ ︸

N2
x︸ ︷︷ ︸

N2Nx

. (17)

When doing the operations from the right to the left, as indicated by the brackets,
obviously the most expensive step, the calculation of N4 integrals, is replaced
by steps that scale as N3 or N2. We note that accuracy and efficiency of RI
methods clearly depend on the quality of the auxiliary basis sets. If one uses
optimised auxiliary basis sets, errors are ca. 1 order of magnitude smaller than
that of basis set changes and efficiency is increased by a factor of ca. 10.

In connection with MP2 the RI approximation can be used to reduce the
computing costs of integral evaluations and transformations [6,7]:

(ia|jb)RI =
∑

P QR
νµκλ

ciνcaµ(νµ|Q)(Q|P )− 1
2

︸ ︷︷ ︸
BP

ia

(P |R)− 1
2 (R|κλ)cκjcλb︸ ︷︷ ︸

BP
jb

. (18)

If one first calculates quantities B, and then performs the step B × B, the 4-
index integrals are replaced by 3-index integrals and the exponent of the scaling
behavior for both calculation and transformation of integrals is reduced by one.
The remaining multiplication B × B still scales as N5, but as it is a matrix
multiplication step it can be done with great efficiency. We note, in passing,
that the RI approximation can be applied to the HF exchange part in a very
similar way to that for MP2 [8]. In both cases the efficiency increases with the
size of the atomic basis set.

3.2 Other Developments Useful for Large Systems

In DFT calculations of large systems the dominating step remains the evaluation
of the Coulomb part even when the RI approximation is used. Further reduction
in computing costs for this part is achieved if interactions of distant electrons
are described by multipole expansions. In this way the number of integrals to be
calculated is drastically reduced for large systems [9].

A problem which often occurs in calculations of metal clusters is that the oc-
cupation of orbitals chosen at the beginning of a calculation is usually not correct
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at the end, i.e. does not fulfil the aufbau principle. A convenient way around this
is to adjust the occupation during iterations. This is best done by calculating
orbital occupations every iteration by a Gaussian error function from the or-
bital energies [10]. This leads to fractional occupation numbers in the vicinity
of the HOMO-LUMO gap. The broadness of the energy region with fractional
occupation numbers is determined by a parameter which can automatically be
decreased during SCF procedure so that a non-fractional occupation that fulfils
the aufbau principle results.

Finally mention should be made of some previous developments which are
nevertheless important for efficient calculations of clusters: optimised grids for
efficient numerical evaluation of EXC [11]; exploitation of symmetry for all point
groups [12]; direct methods for calculation of integrals (i.e. no storage of integrals
on disc) together with integral screening (neglect of insignificant integral batches)
[13].

4 Applications

4.1 The Water Hexamer Anion

As an example for the use of the HF+MP2 method as well as an example for
successful combination of theory and experiment we present a study of anionic
water clusters [14]. Small closed-shell molecules are usually not able to bind an
additional electron unless they have a large dipole moment. Experiments indicate
that a cluster of two water molecules is just able to bind an electron. In these
experiments, water is heated in a chamber with a hole allowing steam to escape
through this hole. Just at the moment when the molecules leave the chamber
electrons are added to this jet. The water molecules in this jet form clusters that
are analysed by mass spectrometry and by photoelectron detachment spectro-
metry yielding information about the number of molecules in a cluster and the
vertical detachment energy (VDE), i.e. the binding energy of the additional el-
ectron. No information about the geometry of these clusters can be retrieved
from experiments and, in particular, how the additional electron is bound, i.e.
whether it is dipole-bound, or rather located at the surface or inside the cluster.
Experiments show large intensities for a six-membered cluster with a VDE of ca.
0.45 eV. The motivation for these experiments was to obtain information about
solvated charged particles in water (‘solvated electrons’). Quantum chemical cal-
culations aimed at finding the geometric structure and the binding mechanism
were performed with the following strategy:

1. Consider many isomers of (H2O)−
6 .

2. Optimise geometrical structure of all isomers.
3. Calculate the energy of the neutral species in the geometry of the anionic

one to get the VDE as energy difference for each isomer.
4. Most promising candidates are those which fit VDE and lowest total energy.

MP2 is known to yield a good description of hydrogen bonds (compared to
HF or DFT). Thus the HF+(RI-)MP2 method was chosen for this problem.
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Fig. 1. The water hexamer anion. Lower panel: experimental VDE spectrum, upper
panel: results of MP2 calculations. Hydrogen bonds are drawn as dashed lines, the
position of the floating center is indicated by an open circle. The different types of
isomers can be divided into four groups (electron inside the cluster, electron on the
surface, electron outside, minima of neutral clusters). For each group at least one
representative isomer is shown

As mentioned previously, molecular orbitals are expanded by atom-centered ba-
sis functions and this has serious consequences on the adequate description of
dipole-bound states: the dipole bound electron is rather far away from any of
the atomic centers. Thus, at the location of the electron no basis functions are
provided for the description of electronic density leading to an unrealistic disfa-
voring of these kinds of states, compared to those where the additional electron
is close to one of the atoms. Matters can be much improved if one provides basis
functions that are not centered on one of the atoms but somewhere around the
molecule (‘floating bases’). In our calculations the position of the floating bases
was optimised simultaneously with the position of the atoms; in this way one
also obtains information about the location of the electron. After assessing the
accuracy of the method at the water dimer anion (also in calculations we found
the additional electron to be bound very weakly), the work of Lee et al. [15] was
used as source for reasonable isomers (these authors mainly used DFT methods
without floating bases and got less reliable results due to the above-mentioned
reasons). The results of our calculations together with the experimental VDE
spectrum are shown in Fig. 1. One observes different total energies, i.e. different
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stabilities for the different types of binding. Least stable is the cluster with the
electron inside. Those binding the electron at the cluster surface are of higher
stability, and even more stable are the ones with a dipole-bound electron. Of
highest stability are two systems which are believed to be lowest minima for
neutral (H2O)6 clusters. From the point of stability these would be the most
promising candidates, but now the second criterion, the binding energy of the
additional electron, has to be investigated. It turns out that these two isomers
show negative VDEs, i.e. these clusters are not able to bind the additional elec-
tron. This indicates that the (H2O)−

6 cluster is only metastable and it explains
why in the experiment one has to add the electrons before the clusters are for-
med from single molecules. As expected, the dipole-binding clusters, which form
the next stable group of isomers, all have clearly positive VDEs. The VDE of the
most stable isomer in this group, ∼0.4 eV, agrees with the experimental value
quite well. Concerning the VDE, the surface-bound states also show matching
VDEs, but they are energetically clearly disadvantaged. Thus we conclude that
the additional electron in (H2O)−

6 is bound by the dipole moment of the cluster.

4.2 Small Gold Cluster Anions

Another example for combining theory and experiments is now discussed. Small
gold clusters were investigated in a way which is in principle the same as that
for the water clusters, but differs in some important details [16]. Firstly, we are
now considering metallic systems, which usually cannot be treated accurately
with HF+MP2 (neither with other HF + post-HF techniques), on one hand
because correlation effects become too large (at least for larger systems), on
the other simply because of high computing costs. Currently the only feasible
way for treating (large) metal clusters is density functional theory. Secondly, the
VDE is a less helpful criterion to distinguish different isomers, as for metallic
systems additional charge is always located at the surface leading to similar
VDEs for most of them. Besides energy, the cross section appeared to be an
appropriate criterion to distinguish isomers: it depends on the cluster shape and
it can be measured from drift cell experiments as well as calculated from quantum
chemically optimised geometrical structures. In the experiment the cross section
is measured by measuring the mobility of (mass-selected) clusters in a cell filled
with helium; due to scattering at the He atoms, the time to pass through the cell
increases linearly with the cross section of the clusters. The cross section can also
be calculated from the quantum chemically determined geometric structure, e.g.
by hard sphere scattering or more sophisticated methods. Experimentally and
theoretically determined cross sections (i.e. cross sections divided by the value of
a fit function originally obtained for cations) for Au−

n clusters, n < 14 are shown
in Fig. 2. Considering the experimental data, it is most striking that for n > 12
relative cross sections are smaller than for n < 12. This indicates a principal
change of the cluster shape at n = 12 resulting in two different cross sections
for n = 12, corresponding to two different isomers. The DFT calculations reveal
the following picture: in all cases investigated (ca. four for each cluster size)
the most stable isomer was planar. For n < 12 the few stable three-dimensional
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Fig. 2. Calculated and measured relative cross sections of gold cluster anions obtai-
ned by dividing both by the fit function Ω(n) = 4

3π
1
3 (rAu + rHe)2 with rAu = 1.47 Å

and rHe = 1.15 Å. This plot projects out the increase of the cross section due to the
increasing cluster size and thus illustrates the effect of different cluster shapes. The
circles with error bars represent the experimental data, the open circles represent cross
sections of candidates from DFT calculations. The line connects the ‘best’ candidates
(based on stability and cross section). In most cases these are lowest in energy; excep-
tions are Au−

4 , Au−
10 and Au−

13 where only candidates that are slightly higher in energy
are in line with the experiment

isomers are higher in energy by usually more than 1 eV. Also for n = 12, 13 the
three-dimensional isomers are higher in energy, but only by 0.6 (0.25) eV. By
combining the results, we may conclude, that up to n = 12 negatively charged
gold clusters are planar, larger systems prefer three-dimensional packing. We
further note that DFT slightly overestimates the stability of planar systems.
The theoretically and experimentally observed planarity for comparably large
systems is surprising, since one would expect, that for the usually non-directed
metal-metal bonds space filling shapes would be preferred to achieve a high
number of next neighbors, as is indeed usually observed for metals (see below).
Obviously Au is an exception, probably due to relativistic effects, yielding a
hybridisation of the 6s and the 5dz2 orbital which leads to a preference for low
coordination numbers.

4.3 A Theoretical Study on Clusters of Magnesium

Metal atoms usually tend to build space-filling systems as it is preferable in case
of non-directed bonds to maximize the number of next neighbors and thus the
number of bonds. The latter also implies the preference of closed polyhedra, like
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Fig. 3. Selected polyhedra and corresponding magic numbers

(cube-)octahedra, icosahedra, decahedra, etc., which leads to so-called ‘magic’
numbers of atoms; selected cases are shown in Fig. 3. One can also introduce
“magic numbers” for the electrons as rationalised in the Jellium model. One
assumes that the clusters are spherical and that effects of the positively charged
cores can be replaced by a uniform positively charged background. This leads to
a model of free electrons in the potential of a harmonic oscillator (in the simplest
case). This results in a highly degenerate shell structure of spherical harmonics
(1s)(1p)(2s1d)(2p1f)(3s2d1g)... , leading to magic electron numbers (whenever a
shell is closed) of 2, 8, 20, 40, 70, 112, 168, 240, 330... . We investigated the stability
of Mg clusters, in particular the occurrence of magic numbers and the validity
of the electronic shell model [17].

To begin with one has to assess the accuracy of DFT for the problem. For
this purpose we compared DFT and (the more accurate) CCSD(T) results for
tetrahedral Mg4. Indeed, the dissociation energy obtained with both methods
was very similar (1.22 eV vs. 1.14 eV) as well as the equilibrium distance (309.4
pm vs. 310.3 pm), at least, if with the careful choice of an appropriate basis:
usually basis sets for Mg are optimised for ‘chemical’ compounds, where Mg
is bound rather ionically and thus partially oxidised. This leads to basis set
exponents that are too steep for an accurate description for Mg-Mg bonds. Thus
we extended the basis by a diffuse p and a diffuse d set and re-optimised all
valence and polarisation functions at Mg4, which led to the above-mentioned
results.
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Fig. 4. Calculated cohesive energies for Mgn (n < 23) and most stable isomers for
n = 4, 10, 20

Firstly, we investigated the stability of small clusters (up to 22 atoms). For
several clusters simulated annealing techniques were applied to get new struc-
tures. Higher and lower aggregates were created by removing or adding atoms.
Especially around magic numbers (Mgn, n=10,20) a variety of structures was
investigated. Cohesive energies

εcoh = − [E(Mgn) − nE(Mg)] /n (19)

are shown in Fig. 4. It is evident, that clusters of pronounced stability are those
with 4, 10 and 20 Mg atoms corresponding to magic electron numbers of 8, 20
and 40 as well as to the magic atom numbers of tetrahedral systems (not shown
in Fig. 3. Thus it is not too surprising that Mg4 and Mg20 have tetrahedral
topologies and Mg10 is at least related to a tetrahedron.

Next, the stability of larger clusters was investigated. The cohesive energy
may be approximated as

εcoh ≈ εcoh,bulk + asurfacen
− 1

3 + aedgen
− 2

3 + acornern
−1 . (20)

For such large systems a systematic search for local minima is currently not
feasible for us. We restricted our investigations to selected symmetric closed
polyhedral structures. A plot of the cohesive energy versus n− 1

3 for all calculated
clusters is shown in Fig. 5. No clear picture arises from these data, but we
can definitely state that up to 309 atoms the hcp packing of the solid state
is disfavoured towards icosahedral packing, which is in line with experimental
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Fig. 5. Calculated cohesive energies for selected clusters versus n− 1
3 . Structures deri-

ved from octahedral are denoted ‘oct’, those derived from decahedra ‘dec’. The line
corresponds to a linear regression including all structure types

findings [18]. The cohesive energy for the bulk evaluated from these data with
the help of (19) leads to a value of 1.38 eV, reasonably close to the experimental
one (1.51 eV).

Finally we comment on the validity of the shell model of electrons. According
to the harmonic model one would expect an energetic structure of shells with
1, 3, 6, 10, 15... orbitals leading to magic electron numbers of 2, 8, 20, 40, 70... .
Investigating the density of states arising from the valence orbitals of ico55,
cuboct55, trdec55 and hcp57, Fig. 6, one obtains the following picture. In all
cases the first three shells are clearly separated from each other and also from
the higher valence orbitals, yielding the magic numbers 2, 8 and 20. The next
magic number, 40, is visible only for hcp57 and ico55, but all clusters show a
zero density when a total number of 34 electrons is reached. Furthermore for
ico55 one recognizes a zero density of states above 58 and 92 electrons. These
numbers can be rationalized by closing of subshells that occur from distortions
of the spherical shape of the clusters. In all cases the subshells with highest l
quantum number are lowest in energy, which leads directly to the magic num-
bers 18 (1s+1p+1d), 34 (1s+1p+1d2s+1f), 58 (1s+2p+2s1d+1f2p+1g) and 92
(1s+2p+2s1d+1f2p+1g2d3s+1h). For the other clusters, where the deviation
from a sphere is larger, only some of these numbers can be observed.
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Fig. 6. Calculated valence density of states (arbitrary units) vs. orbital eigenvalues in
eV for different cluster shapes of Mg55 (Mg57 for hcp). The calculated discrete levels
were broadened by Gaussians of 0.1 eV FWHM to help the eye. The numbers denote
the sum over valence electrons up to a given energy

5 Summary

In this contribution calculations on water clusters with HF+MP2 methods and
DFT studies on metal clusters have been presented. The examples selected show
fruitful combinations of theoretical and experimental data, as well as the test
of simple models by quantum chemical calculations. The work on program de-
velopments necessary to make algorithms efficient for calculation of these large
systems was discussed using the example of the RI approximation.
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Abstract. An important consequence of the expanding study of the nanocrystalline
state is the recognition of new behavior that is exposed at the nanometer length scale,
but this also requires the recognition of the scaling of conventional behavior. The syn-
thesis pathways further emphasize the importance of reaction kinetics and especially
nucleation processes where the nanometer length scale is central to the kinetics. Si-
milarly, the observed phase selection during nanostructure synthesis is often different
than that expected from the thermodynamics of bulk phase stability, but can be ana-
lyzed in terms of a scaling of the hierarchy of equilibrium and the influence of large
characteristic driving free energies. At the same time, the reaction pathways that yield
different phase states and microstructures can be described in terms of open or closed
system conditions that reflect the manner in which the excess free energy is developed
during synthesis. The principles that govern the genesis of nanostructured materials
and the key issues concerning the reaction kinetics and stability are illustrated from
the observed behavior in specific amorphous alloys, but the treatment also applies in
general to materials systems.

1 Introduction

One of the highlights of the contemporary attention directed towards nano-
crystalline materials is the major innovation in processing methodologies that
have been developed to achieve nanostructured materials. The nanocrystalline
state, where the microstructural size scales are in the 1 to 100 nm range, can be
synthesized by a variety of processing routes starting with the vapor, liquid or
solid state [1]. The earliest efforts were directed principally to attain laboratory
scale quantities by a vapor condensation path. Subsequent efforts have yielded
a large variety of methods based upon strategies involving vapor, liquid and
solid state processing [2,3]. Within this large and growing menu of options it is
possible to characterize the methods into two broad categories based upon open
or closed systems that relate to the manner in which the driving free energy
that motivates structure synthesis and change is developed during processing.
An important consequence of the expanding study of the nanocrystalline state
is the recognition of different materials behavior that can be exposed at the
nanometer length scale [1].

A useful concept for the study of non-equilibrium processes that yield nano-
structured materials is the distinction between closed and open system processes
[4]. In a closed system, an energized state is achieved through a rapid tempe-
rature, pressure or composition change to create a certain level of undercooling

J.H. Perepezko, Nanostructured Materials: Reaction Kinetics and Stability, Lect. Notes Phys. 658,
221–249 (2005)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2005



222 J.H. Perepezko

or supersaturation (i.e. a metastable state), which then releases the excess free
energy during relaxation towards equilibrium. With an open system, the ener-
gized state is often attained by a continuous incremental excess energy input to
an initial state through the incorporation of excess lattice defects or solute on a
localized spatial scale and time interval that is short compared to the relaxation
time so that the relaxation process is influenced [5–7].

Although there can be synthesis and processing history related effects that
influence the behavior and properties, the present discussion will focus on some
of the key thermodynamic and kinetics issues that are relevant to nanostructured
materials. The nanostructure can be expressed as isolated volumes within a bulk
volume or as aggregates of nanoparticles. Regardless of the aggregation condition
or synthesis method there are common themes in the thermodynamic stability
and reaction kinetics. The fundamental issues include the phase selection during
the initial synthesis and the phase stability after synthesis and during subsequent
treatment.

In order to treat the basic issues in phase stability within the limited coverage
that is available, some of the key points in the scaling of the free energy to the
nanoscale size are examined by considering selected thermodynamic relations for
macroscopic systems and their modification for high interfacial area nanoscale
systems. For certain alloy solutions that exhibit phase separation, the scaling
from macroscale to nanoscale has a form that is influenced by the limitation
on the spatial extent of diffusional phase decomposition. Similarly, the basic
kinetic reactions are examined from the point of view of crystallization, but these
points are general in terms of application to many aspects of synthesis reactions
as well as the understanding of the properties and behavior of nanostructures.
As a means of illustrating the use of the relevant thermodynamic and kinetics
concepts to the analysis of nanostructure development, an example is considered
for nanocrystallization of amorphous alloys.

2 Phase Stability Thermodynamics

2.1 Pure Components

In the analysis of relative phase stability and the driving free energies for different
phase transformation reactions the Gibbs free energy, G, is the main function of
interest. By definition,G = H−TS whereH is the enthalpy, T is the temperature
and S is the entropy [8,9]. For reactions between two phases, the free energy
change is the difference, ∆G = ∆H−T∆S. For example, during solidification of
a liquid,Gs−Gl = (Hs−Hl)−T (Ss−Sl) or∆Gf = ∆Hf−T∆Sf . At equilibrium,
∆Gf = 0 so that ∆Sf = ∆Hf/Tm. If ∆Sf is taken as independent of T (i.e.
neglecting the small heat capacity correction), then ∆Gf = ∆Hf (1 − T/Tm) =
∆Hf (Tm − T )/Tm = ∆Hf∆T/Tm so that the driving free energy (i.e. driving
force) for the reaction is proportional to the undercooling, ∆T . The dependence
of the molar free energy on temperature is illustrated in Fig. 1 for a liquid, a
stable α phase and a metastable β phase where it is evident that the formation
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Fig. 1. Free Energy as a function of temperature for a single component. The melting
point of the stable α phase T α

m and the metastable β phase T β
m is indicated.

of the metastable β phase requires a minimum liquid undercooling below the
stable α phase melting point of ∆T = Tα

m − T β
m.

From the second law of thermodynamics several differential relations can be
developed (i.e. Maxwell relations)[8]. The relation for the Gibbs free energy for
a single phase is

dG = V dP − SdT (1)

where V is the volume and P is the pressure. For the liquid-solid case at equili-
brium

VsdP − SsdT = VldP − SsdT (2)

or
(
dP

dT

)

eq

=
Ss − Sl

Vs − Vl
=
∆Sf

∆Vf
=

∆Hf

∆VfTm
(3)

which is the Clapeyron equation for the pressure dependence of the melting
point. When (3) is applied to other two-phase coexistence such the solid-vapor
and liquid-vapor equilibrium, the pressure -temperature phase diagram for a
single component is developed as shown in Fig. 2. The solid lines represent the
two phase coexistence conditions where there is one degree of freedom according
to the Gibbs phase rule (i.e. P +F = C+2 where P = the number of phases, F
= the number of degrees of freedom and C = the number of components). The
lines intersect at an invariant triple point where F = 0. It is useful to note that
(∂G/∂T )P = −S and (∂G/∂P )T = V .
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Fig. 2. A schematic pressure vs. temperature diagram for a single component.

2.2 Alloy Solutions

For alloy solutions, the chemical terms for the free energy are included by adding
the partial molar free energy for each component, such as i or j for the binary
case to (1) as

dG = V dP − SdT + dni

(
∂G

∂ni

)

T,P,nj

+ dnj

(
∂G

∂nj

)

T,P,ni

(4)

The partial molar free energy represents the chemical potential, µi, that is defi-
ned as (

∂G

∂ni

)

T,P,nj

= µi = µ0
i +RT ln ai (5)

where n is the number of moles, µ0
i is the standard state chemical potential,

R is the gas constant and ai is the activity that is the product of an activity
coefficient, γi and the mole fraction, Xi (note that Xi +Xj = 1 and for an ideal
solution γi = 1). For alloy formation (i.e. atomic mixing) at constant T and P
for each phase with a given composition XB in an A-B system, the molar free
energy is

G = (1 −XB)µA +XBµB (6)

For transformation between two solution phases such as liquid and solid

∆Gm = (1 −XB)(µs
A − µl

A) +XB(µs
B − µl

B) (7)

At equilibrium, ∆Gm = 0 so that µs
A = µl

A and µs
B = µl

B . For the examina-
tion of interactions in solutions it is often useful to represent the free energy
change for mixing, ∆Gm, in terms of an enthalpy of mixing, ∆Hm and a mixing
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Fig. 3. Schematic free energy vs. composition diagrams for a binary alloy as (a) a single
phase liquid solution with the component chemical potentials µL
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by the pure component intersections with the tangent to the Gm vs. XB curve at X0

and as (b) a two-phase liquid-solid equilibrium at a temperature T1, with common
tangent points at XS and XL. The intersection of the GL and GS curves defines the
T0 point [12].

entropy,∆Sm = −R [(1 −XB) ln(1 −XB) +XB ln(XB)] that applies to ideal
and regular solutions as [8]

∆Gm = ∆Hm − T∆Sm = ∆Hm +RT [(1 −XB) ln(1 −XB)] (8)

The composition dependence of ∆Gm yields a concave curve when ∆Hm < 0 as
illustrated in Fig. 3a. In addition, in Fig. 3b, the equilibrium condition of the
equality of the chemical potential for each component in the coexisting phases
is illustrated by the common tangent construction [8,9]. The various phase equi-
libria that are defined by a collection of free energy vs. compositions diagrams
at different temperatures are the basis of the equilibrium phase diagram. As de-
monstrated in the schematic diagram in Fig. 4, the common tangent points on
the free energy vs. composition diagram define the tie lines between coexisting
phases at each temperature on the phase diagram [10].

An important application of the thermodynamic description of phase stabi-
lity is the representation of the free energy change that accompanies a phase
transformation (i.e. the driving free energy [9]). A change of phase requires a
departure from equilibrium as the system develops a supersaturation or an un-
dercooling that represents the driving free energy as indicated in Fig. 5. For a
dilute solution where the activity is given by the mole fraction, the free energy
change associated with a precipitation reaction where the α phase composition
changes from X0 to Xα as pure B precipitates at temperature T1 is given by

∆G = RT1 ln
(
X0

Xα

)
(9)

Since the solvus phase boundary composition, Xs, may be represented as [8]

XS = exp
(
∆SS

R

)
exp

(
−∆HS

RT

)
(10)
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Fig. 5. Schematic illustration for the development of a supersaturation [X0/Xα] as an
α phase alloy of composition X0 is undercooled by an amount ∆T below the α phase
solvus boundary.
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where ∆SS is the entropy for solution and ∆HS is the enthalpy of solution, the
free energy change for precipitation can be expressed as

∆G =
∆HS∆T

TS
(11)

where for X0, ∆T = Ts − T1 and Ts is the solvus temperature. Again, this
example demonstrates that a supersaturation can be expressed in terms of an
equivalent undercooling.

2.3 Phase Stability Hierarchy

Nucleation-Controlled Reactions. Throughout the analysis of transforma-
tion behavior, it is commonly recognized that nucleation control is an important
part of the initial stage of a reaction [11]. For example, the product phase density
and phase selection are often considered as important signatures of nucleation
control; especially when metastable phases and their associated undercooling or
supersaturation are involved in the reaction [12–14]. Under nucleation control
a strong temperature dependence of the product phase number density can de-
velop and lead to a nanoscale microstructure, but this can be modified by the
availability of heterogeneous nucleation sites. Nucleation limitations in diffusion
reactions, especially those involved in reactive diffusion also represent a form of
nucleation control that is important in nanostructure synthesis [15]. In terms of
alloy metastability, nucleation control is important in allowing access to meta-
stable states for measurement and analysis. By accentuating the kinetic factors
limiting nucleation through the isolation or removal of active nucleation sites
further excursion into higher levels of metastability become possible [16]. In ef-
fect, the observation of nucleation control is directly related to the factors that
promote the development of large undercooling or supersaturation, enable the
expression of kinetic transitions through competitive phase selection and result
in the refinement of the product size to the nanoscale level.

Competitive Phase Selection Kinetics. The development of a transforma-
tion microstructure based upon stable equilibrium phases or metastable phases
depends on the relative nucleation and growth kinetics of the competing struc-
tures that are illustrated schematically in Fig. 6 for a solidification reaction [12].
The thermodynamic relationships for the molar free energy G of a material as
a liquid, stable phase α and metastable phase β are given in Fig. 6a. In Fig. 6b
a function describing the nucleation barrier, ∆G∗ is shown to illustrate the role
of competitive nucleation. Similarly, in Fig. 6c the relative growth kinetics for
stable and metastable phases are illustrated. It is clear that the thermodynamic
undercooling to yield temperatures below the melting point of the metastable
phase is only a minimum necessary condition for its development. In order to
dominate the microstructure, the metastable phase must form at a larger un-
dercooling than the minimum in order to allow it to have faster nucleation and
growth kinetics than the competing stable phase.
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Fig. 6. Schematic representation of the operation of competitive phase selection ki-
netics which favors the formation of a metastable phase β from the liquid L at low
temperature in spite of (a) the thermodynamic stability of α. (b) shows the tempera-
ture range for faster nucleation of β phase while (c) shows the temperature range for
faster growth of the β phase.

A common theme in the development of new microstructural options by
advanced non-equilibrium processing methods is the occurrence of metastable
structural states. Often, the reactions that occur during the freezing of undercoo-
led liquids or during other rapid transformations are viewed as non-equilibrium
processes. However, it is also evident that some of the departures from full equi-
librium can be considered in terms of different levels of metastability. In fact,
a hierarchy of equilibrium can be identified based upon the severity of the ki-
netic constraints that affect the capability of a material to relax towards full
equilibrium during processing [12]. As the rate of reaction becomes faster, kine-



Nanostructured Materials: Reaction Kinetics and Stability 229

Fig. 7. Schematic illustration of some of the levels in the hierarchy of equilibrium.
The equilibrium phase diagram of a system with an intermediate phase is given in
(a) Included are the metastable extensions of the liquidus and solidus curves for the
primary solution phases(dashed). Solidification under metastable equilibrium conditi-
ons can result in a bypassing of the intermediate phase to yield a metastable eutectic
phase diagram between α and β. The T0 curves for the primary solutions are included
in (b). The extensions of these curves to temperatures below the metastable eutectic
are indicated as dashed curves. If the primary phases have different crystal structures
and low mutual solubility, then the T0 curves might not intersect as in (d). Such a
situation favors glass formation in the composition range where the Tg curve is greater
than the T0 curves in (c).

tic constraints that can arise from nucleation and growth limitations associated
with an equilibrium product phase formation can develop and can expose alloy
metastability that often coincides with nanostructure synthesis. For the suppres-
sion of the equilibrium phase or the formation of a kinetically favored metastable
phase, it is still possible to analyze reactions in terms of a metastable equilibrium
that is used locally at interfaces. The transition from stable to metastable equi-
librium is illustrated in Fig. 7 where the kinetic suppression of an equilibrium γ
phase (Fig. 7a) yields a metastable eutectic involving the α and β phases [17].
Moreover, it is expected that the application of the appropriate local equilibrium
can be used when the processing involves nanoscale structures. Under extreme
conditions, loss of interfacial equilibrium for either a stable or metastable phase
can develop when even interfacial relaxation becomes too slow. With the loss of
interfacial equilibrium, thermodynamics can still be used to restrict the possible
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range of compositions that can exist at an interface at various temperatures since
the selection must yield a net reduction in the free energy of the system [13]. One
way to represent the thermodynamic restrictions is based upon the application
of T0 curves which represent the locus of temperatures and compositions where
the free energies of two phases are equal as illustrated in Fig. 3b for liquid and
solid phases and thus define the limiting condition for partitionless transforma-
tion [13]. For example, as interfacial equilibrium is lost, the liquidus and solidus
boundaries in Fig. 7b collapse to the T0 curves. With isomorphous systems that
exhibit complete solubility the T0 curve is continuous with composition (Fig. 7c)
while for alloys based upon components with different structures each crystal
phase has a T0 curve (Fig. 7d). At temperatures and compositions above the T0
curves solute partitioning is required for solidification (Fig. 7d). Because of the
diffusional constraint due to solute partitioning, a crystallization reaction can
be inhibited by quenching to promote glass formation [18,19]. Within the overall
hierarchy of stability the systematic examination of the different levels of kinetic
constraints can provide useful insight into the thermodynamic analysis of alloy
metastability and phase selection during nanostructure formation.

3 Nanostructure Considerations

3.1 Thermodynamic Modifications

The nanoscale is often reported as a linear dimension, but the important interfa-
cial effects should be considered in terms of the interfacial area per unit volume
A/V . For example, for a sphere: A/V = 3/r = 3 × 107 m−1 for r = 100 nm.
This is significant! Interfacial effects can be included in the free energy as [9]

dG = V dP − SdT +Σµidni +ΣσidAi (12)

where σi is the interfacial energy and Ai is the interfacial area. The increment
in free energy due to interfaces is represented by the Gibbs-Thomson relation [9]
in terms of the interface curvature κ, that is determined by the principal radii,
ri, as:

∆G = κσ =
(
r−1
1 + r−1

2

)
σVm (13)

For a sphere, ∆G = 2σVm/r. The effect of curvature on the melting point and
the relative phase stability is indicated in Fig. 8 where the dependence of the
melting point of a pure component on curvature Tm(r), α can be expressed as

Tm(r) = Tm − 2σSLVm

r∆Sf
(14)

where Tm is the macroscopic size melting point. There are two key points that
are illustrated in Fig. 8. First, the melting points for the α and β phases i.e.
Tα

m(r) and T β
m(r) decrease with increasing curvature. Secondly, the β phase that

is metastable for macroscopic sizes can become the stable phase with respect to
the α phase at high curvature values. Furthermore, the phase stability relations
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Fig. 8. Schematic Illustration of the modification of the stability of the α phase at the
nanoscale. (a) when σα < σβ , there is an enhancement of a phase stability; (b) when
σα > σβ , there is a reversal of phase stability between the α phase and the β phase(the
superscript n refers to the nanoscale size).

Fig. 9. Schematic illustration of the influence of curvature (1/r) on the melting point of
the α phase and the β phase and on the relative phase stability when σαLVM/∆Sαf >
σβLVM/∆Sβf .

for a macroscopic scale system can be modified in different ways depending on the
relative magnitude of σ for each phase for a nanostructured system. As illustrated
in Fig. 9, when σα < σβ , the stability of α is enhanced at the nanoscale. However,
when σα > σβ , there is a reversal of phase stability at the nanoscale. There are
a number of examples of the reversal in relative phase stability when the size
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Table 1. Representative driving free energies for various transformation reactions

Reaction Process Free Energy Typical Value Remarks
(J/mol)T = 1000K

Crystallization ∆Hf∆T/Tm 3 · 103

Mixing/ RT (XA ln XA 5 · 103 Ideal solution
Interdiffusion +XB ln XB) behavior

Oxidation ∆G0 = −RT ln K 5 · 104 − 5 · 106 ∆G0 formation of oxide
Sublimation/ ∆Hv∆T/Ts 104 − 105 ∆Hv− sublimation enthalpy
Deposition Ts− sublimation temperature

Grain 2σ/r 20 for r = 1 µm σ = 1 J/m2

growth 2 · 103 for r = 10 nm
Precipitation RT ln Xα/X0 104 Xα/X0 = 10

Cold work ρGb2 102 − 103 G− shear modulus
(stored energy) b− Burgers vector

ρ− dislocation density

scale changes from macroscopic to nanostructured [20–24]. In fact, it is possible
to consider that by suitable control over σ, such as through selective adsorption,
the phase stability may be controlled in nanostructured systems [25–27].

The excess free energy due to curvature that acts to control the relative
phase stability in nanoscale materials also acts to modify other thermodynamic
behavior. For example with the same analysis that was applied to express the
curvature dependence of the melting point, the dependence of the solubility
may be represented in terms of particle size. This behavior is illustrated in
Fig. 10 where it is evident that the increase in chemical potential with decreasing
particle size will act to drive a diffusive flux between neighboring articles in a
particle size distribution such as that produced by a precipitation reaction. An
important consequence of the interparticle transport is the dissolution of the
finest particles along with a concomitant increase in the average particle size in
the distribution [10]. This coarsening or Ostwald ripening behavior is central to
the kinetic stability of a nanoscale microstructure.

A useful perspective on the different diffusional reactions and phase formation
processes that have been discussed can be developed by considering the relative
magnitudes of the driving free energies associated with each of the reactions. A
partial summary of the representative magnitudes for the driving free energies for
a selection of reactions is presented in Table 1. The listings in Table 1 indicate
that for typical processes involving chemical changes or phase transitions the
driving free energies range from a few to 100 KJ/mole. While the excess free
energy associated with a nanoscale microstructure is only a few KJ/mole, this
level is sufficient to alter the relative phase stability and to modify the path of
kinetic reactions.

3.2 Nanoscale Reaction Kinetics

Initial Stage of Interface Reaction. Besides thermodynamic comparisons,
there are also kinetic features that are negligible in bulk sizes, but can become
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Fig. 10. Schematic free energy vs. composition diagram demonstrating the influence
of interface curvature of a β phase particle on the solubility.

a dominant influence at the nanometer size scale. As the size scale of a micro-
structure reaches the nanometer level, the diminished length scale of diffusional
processes has an important impact on the kinetics of solute redistribution and
phase reactions. For example, with a limited spatial extent for diffusion it is ne-
cessary to consider the influence of large concentration (i.e. chemical potential)
gradients on reaction kinetics. During the initial stages of reaction, the steep gra-
dient acts to inhibit reaction kinetics and to allow access to metastable regions
through a kinetic stabilization [16]. However, this is only a sufficient condition
since Desré [28] has shown that a steep concentration gradient can also act to
reduce the effective driving free energy for phase nucleation.

During the initial stage of an interface reaction there are several specific
features that can have a significant impact on the reaction kinetics [16]. This
condition is illustrated in Fig. 11, where the development of an intermediate β
phase during the aging of a supersaturated α solid solution (Fig. 11b) is compa-
red to β phase formation in a diffusion couple between pure A and B (Fig. 11c).
In the conventional aging treatment, the formation of β occurs by a fluctuational
nucleation process in a compositionally homogeneous, supersaturated matrix α
phase of composition X0. For example, it is clear that some diffusional mixing
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Fig. 11. Composition of phase development in an alloy of composition X0 during (b)
precipitation and (c) interdiffusion. In both cases, the reaction yields a common final
state (d).

to at least the levels Xα and Xγ at T1 must occur; otherwise a β nucleus could
not develop since it would be in contact with unsaturated phases and dissolve.
Moreover, if the α and γ phases are isostructural and do not undergo phase
separation, the interdiffusion profile can extend smoothly across the original in-
terface as shown in Fig. 11c (dotted curve). In this case all compositions from
Xα to Xγ are available for nucleation of β phase. Once the β phase develops,
the concentration profile is modified as shown in Fig. 11c (broken curve) for the
growth of a β phase layer at the expense of γ phase. Of course, the common
end state of the diffusion process for an overall composition X0 is also given
by Fig. 11d. The comparison in Fig. 11 clearly demonstrates that for an overall
composition X0 the end state of an intermediate phase formation by an aging
reaction and an interdiffusion reaction are the same, but the pathways to this
end state are quite different. The fundamental difference in behavior is closely
related to the influence of a large concentration gradient, ∇XB , on intermediate
phase formation.

The role of the concentration gradient in delaying intermediate phase nuclea-
tion was first recognized by Desré and Yavari [28,29] and Gusak [30,31] who ap-
plied it to explain the observation of a critical thickness of an amorphous phase
layer developed during solid state amorphization by diffusion. With a critical
nucleation size, r∗ and a concentration range, ∆XB over which the intermediate
phase can form, nucleation will be inhibited unless ∆XB/r

∗ ≥ ∇XB . When the
effect of the concentration gradient on the thermodynamics of phase formation
is also considered, ∇XB values of the order of 106 m−1 can have a significant
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Fig. 12. Work of nucleus formation ∆GN as a function of nucleus size r and imposed
concentration gradient ∇X.

influence on the initial phase formation and can inhibit nucleation to allow me-
tastable supersaturated regions to develop over a distance well in excess of the
100 nm scale usually considered to mark the start of nanocrystalline materials.

In order to illustrate the concentration gradient effect more completely, it is
useful to consider the result of the Desré analysis [28] of the nucleation barrier,
∆GN , for a cubical nucleus of length 2r under an imposed ∇XB . For the volume
nucleation of an intermediate phase of composition X∗

B from a solid solution of
composition X0 the work is given by

∆GN (X0, X
∗) = 24σscr

2 + 8ρ∆Gscr
3 +

4
3
ρα
(
∇2XB

)
r5 (15)

where σsc is the interfacial energy between the solution and the intermediate
phase, ρ is the number of moles of atoms per unit volume, ∆Gsc is the free
energy change for polymorphous transformation at composition X∗, and α =
(∂G2

s/∂X
2
B) for the solution. The first two terms in (15) represent the usual

contribution of surface and volume effects to nucleus formation. The main con-
sequence of the concentration gradient appears in the ∇2XBr

5 term of (15).
Clearly, this term will be most important during the earliest period of interdif-
fusion. In fact, as shown in Fig. 12 which refers to nucleation of Ni10Zr7 in Ni-Zr
amorphous layers [28,29] at the largest ∇XB values nucleation is prohibited until
a critical gradient, ∇X∗

B , given by

∇X∗
B =

ρ

9σsc

(2∆Gsc)3/2

α1/2 (16)

is reached, but even at ∇X∗
B the nucleation barrier is larger than that for a

uniform solid solution. A similar result of impeded intermediate phase nucleation
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Fig. 13. Two possible forms of alloy metastability during interdiffusion.

in a large concentration gradient has been reported by Hoyt and Brush [32] who
also examined the optimal nucleus shape. In order to minimize the effect of the
gradient, it appears more favorable for the nucleus to spread out along the initial
interface. The importance of a diffusion process before phase nucleation in thin
films has been noted as well by Coffey and Barmak [33] and Philibert [34]. There
are also transient effects during low temperature interdiffusion in multilayer
samples that can influence phase formation [35]. Some of the time dependent
effects can be traced to an asymmetric ∇XB profile that often develops due to
large differences in the component interdiffusion coefficients. These developments
represent new kinetic features of interface reactions which can provide for a
rational accounting of phase development [16,32,34,36].

While the influence of an imposed steep concentration gradient was originally
applied in an attempt to understand solid state amorphization reactions, recent
experience indicates that the thermodynamic consequences of ∇XB on phase
formation are general and may be required as part of a general model of initial
phase formation during interdiffusion. Furthermore, the delay period introduced
in order for the ∇XB level to be reduced below the critical level for nucleation
provides a kinetic constraint which exposes the interdiffusion zone to metastable
equilibria. Two general forms of the alloy phase metastability that can develop
are illustrated in Fig. 13. For the conditions depicted in Fig. 11 for isostructural
terminal phases a metastable isomorphous equilibria develops before interme-
diate phase nucleation (Fig. 13a). Alternatively, for phases with different crystal
structures complete solubility is interrupted by a two-phase composition step
or by the development of a metastable extension of a high temperature phase
(Fig. 13b). In solid state amorphization this phase is a liquid which develops
below the glass transition. In effect, the amorphous layer provides for a meta-
stable solubility and allows for ∇XB to be reduced below the critical value for
nucleation.

Nanoscale Phase Separation. Even for reactions that are not subject to a
nucleation limitation such as spinodal decomposition, the kinetics can be in-
fluenced when the reaction occurs in nanometer size scale volumes. Spinodal
decomposition occurs at the limit of metastability of a single phase solution to
diffusional unmixing or phase separation. The analysis of spinodal decomposi-
tion requires the solution of the diffusion equation in an inhomogeneous system.



Nanostructured Materials: Reaction Kinetics and Stability 237

T2

T1

A X1 X0 X0 X2 B

XB

G
(T

2)

'

α1+ α2

Chemical
spinodal

α

G0

 d
2
G____

 dX
2

 
= 0

Fig. 14. Alloys between the spinodal points are unstable and can decompose into two
coherent phases α1 and α2 without overcoming an activation energy barrier. Alloys bet-
ween the coherent miscibility gaps and the spinodal are metastable and can decompose
only after nucleation of the other phase.

The interdiffusion flux, J̃ is represented by [37,38]

J̃ = −M∇(µA − µB) (17)

where M is the mobility and is positive. For a homogeneous system,

µA − µB =
∂G

∂XA
(18)

so that

J̃ = −M ∂2G

∂X2
A

∇XA (19)

Since the interdiffusion coefficient D̃ can be defined as

D̃ = M
∂2G

∂X2
A

(20)

It is evident that D̃ < 0 within the spinodal composition range that is indica-
ted in Fig. 14 where ∂2G/∂X2

A < 0. In effect, this characteristic signifies the
uphill diffusion process that yields the phase separation. For an inhomogeneous
system it is necessary to include the local interactions that arise from ∇XA and
modify the free energy. The simplest form for the free energy that allows for the
incorporation of the local interactions is expressed by [38]

µA − µB =
∂G

∂XA
− 2K∇2CA (21)
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where K = NvkBTcψ
2 with Nv the number of atoms per unit volume, kB the

Boltzmann constant, Tc the consolute temperature in Fig. 14 and ψ is the inter-
action parameter, which is of the order of the interatomic spacing a0 [37]. For
the inhomogeneous system the flux becomes

J̃ = −M ∂2G

∂X2
A

∇XA − 2MK∇2XA (22)

from the divergence the diffusion equation is expressed as

∂XA

∂t
= M

∂2G

∂X2
A

∇2XA − 2MK∇4XA (23)

The solution of the diffusion equation gives

XA −X0 = exp
[
R(β̄)t

]
cos

(
β̄r
)

(24)

where β = 2π/λ and λ is the wavelength of the composition profile. Since R(β)
has a sharp maximum with β only wavelengths near the maximum λm are ob-
served.

During spinodal decomposition the onset of the reaction is set by the scale
of diffusional unmixing that is expressed by the wavelength of the composition
modulation, λc that is given by [37]:

λc =

√
−8π2K

∂2G/∂X2
B

(25)

whereK is a gradient energy factor and (∂2G/∂X2
B) is the curvature of the molar

free energy as a function of composition, X. For a regular solution, ∂2G/∂X2
B =

−NvkB(Ts−T )/(XB −X2
B), where Ts−T is the undercooling below the spinodal

onset temperature, Ts [38]. With a regular solution then the critical wavelength
for an equiatomic alloys can be represented as

λc =

√
32π2a2

0Tc

(Ts − T )
(26)

so that λc is inversely proportional to the amount of undercooling below the
spinodal boundary. Significant decomposition by spinodal unmixing can not de-
velop until the value of λc is less than the size of the sample. For nanometer
samples such as thin films or particles, the kinetic inhibition can allow for the
presence of a single phase solid solution at an undercooling of several hundred
degrees below the bulk chemical spinodal [38] as indicated in the plot given in
Fig. 15 that shows the undercooling for the onset decomposition for the scaled
λ/ψ values. While the persistence of an unstable solid solution below the spin-
odal boundary in nanometer samples may appear to be a nonequilibrium effect
due to the processing method used to create nanocrystalline sample volumes, it
is actually a natural consequence of the mechanism of the spinodal diffusion pro-
cess. Lastly, in nanometer size scales there can be a strong and even dominant
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Fig. 15. The expected wavelength vs. undercooling below the spinodal for the hypo-
thetical alloy with Tc = 1000K and XB = 0.5 [40].

influence of elastic strain energy on the relative phase stability and competitive
kinetics. A full treatment of these effects is beyond the scope of the present dis-
cussion, but important developments can be found in the work of Johnson and
Voorhees [39].

4 Nanocrystallization

The generation of nanocrystalline structures from the liquid or vapor requires the
attainment of a high crystal nucleation rate which in turn is promoted by a large
undercooling before the onset of crystallization. Actually, there are two pathways
that may be followed to achieve the high crystal nucleation density. If a sample
is rapidly quenched at a rate that happens to coincide with the conditions for a
high nucleation rate a nanocrystalline structure is possible by direct quenching.
However, under most conditions of rapid quenching it is difficult to control the
processing and reproducibility. Instead, a direct cooling to an amorphous state
and a subsequent low temperature crystallization treatment is usually preferred
as a method of achieving reproducible nanostructure synthesis including the
fabrication of nanostructures in bulk sample volumes [40–44].

The metallic glasses that provide the most effective routes to nanocrystal-
lization are closely related to two important aspects of solidification that involve
kinetic competition: (1) avoidance of crystallization upon cooling of the liquid
and (2) the control of crystallization upon heating of the glass. Although there
are connections between these aspects, including the common underlying impor-
tant role of melt undercooling as a measure of liquid metastability, in each case
the controlling reactions occur under regimes of different kinetic constraints [45].
In addition to the closed system methods involving liquid or vapor quenching, it
is recognized that open systems involving continuous deformation or irradiation
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can drive a material towards nanocrystallinity. In this case, the stored energy
due to defects, grain refinement and solute supersaturation is a measure of the
level of metastability that is crucial to consider in the analysis of amorphization
and the development of nanostructured microstructures [4,7,41].

4.1 Devitrification Reactions

The crystallization (or devitrification) behavior of amorphous materials is of
central importance in the synthesis of nanostructured materials [46]. The reac-
tion pathways that are operative during crystallization must be identified and
controlled in order to develop successful strategies for the consolidation of amor-
phous powders or ribbons that can be processed into bulk nanostructured solids.
Moreover, the control of the reaction path during crystallization provides for the
option to develop nanoscale structures with different phase selection.

The different reaction paths and product selection options are identified in
Fig. 1 which illustrates schematically the free energy relationships between an
initial amorphous phase that is considered as an undercooled liquid solution and
several crystalline product phases that include stable α and β phases and a me-
tastable γ phase. Within the alloy composition ranges that are usually favored
for glass formation there are several types of crystallization reactions that can
be employed to develop nanocrystalline structures during controlled heating or
isothermal reaction [42]. One of the simplest reactions is the direct transfor-
mation from the glass to a single phase crystal without composition change as
illustrated in Fig. 16a and b by pathways (1) and (2) for either stable or meta-
stable initial product phases. The composition invariant or polymorphic reaction
can yield metastable structures such as supersaturated solid solution phases or
metastable intermediate phases that can undergo further transformation that is
indicated by pathways (1′) and (2′) in Fig. 16a and b.
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Fig. 16. Schematic Free Energy versus composition diagrams illustrating some of the
possible nanocrystallization reactions of an amorphous phase. (a) reaction pathways
for an alloy with a negative heat of mixing and a metastable γ phase. (b) reaction
pathways for an alloy with a positive heat of mixing.
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Fig. 17. Schematic illustration of the characteristic microstructural morphologies that
develop during nanocrystallization by (a) polymorphic, (b) eutectic, and (c) primary
phase reactions. In (c) the dotted curve around primary phase nanocrystals denotes
the extent of the solute diffusion field.

With primary crystallization, a single phase is the initial product, but the re-
action proceeds with a partitioning of solute to yield a solute lean primary crystal
and a residual amorphous phase matrix that is enriched in solute. The kinetics
of primary crystallization are evidently related to the rate of solute diffusion in
the amorphous matrix that is necessary to dissipate the solute that is rejected
during primary crystal growth. It is also apparent that primary crystallization
does not result in a stable equilibrium product structure that is indicated by
the compositions αe and βe in Fig. 16a and b. In order to complete the primary
crystallization a subsequent multiphase crystallization develops either from the
nucleation site provided by the primary crystal or directly from the amorphous
phase. For example, with eutectic crystallization that is indicated by pathway
(3) in Fig. 16a, the product phases (i.e. α and β) often develop by a coupled
growth and appear with a lamellar or rod type of regular morphology in a sphe-
rulitic pattern. In this case the synthesis of a nanoscale microstructure requires a
high density of α and β colonies with an ultrafine lamellar spacing. A schematic
illustration of the characteristic microstructural morphologies associated with
each of the nanocrystallization reactions is provided in Fig. 17.

Often, under high undercooling conditions metastable phase reactions can
develop as a precursor to the formation of stable crystallization products. For
example, as indicated in Fig. 16b the undercooled liquid or amorphous phase
can undergo a phase separation reaction leading to the formation of two liquids
with different compositions that are indicated by Ga and Gb in Fig. 16b. At low
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temperature or high undercooling, limited atomic mobility will result in a fine
scale of phase separation that can extend into the nanoscale regime. Moreover,
it has been established that in some cases the interfaces between the different
liquid regions can serve as heterogeneous nucleation sites for subsequent crystal-
lization reactions and establish high nucleation product number densities [47].
In addition, there is evidence that in some systems minor impurity levels can
promote the development of phase separation reactions [14]. Another example of
a precursor reaction is the formation of an intermediate phase as a metastable
product as illustrated in Fig. 16a for the γ phase.

4.2 Kinetics of Nanocrystallization

One of the key requirements that must be satisfied for the development of a
nanoscale microstructure by a crystallization reaction is the attainment of a
very high nucleation product number density. A key concept in nucleation is
the development of an activation barrier to the creation of a new phase due
to the interface between the produce and parent structures. The origin of the
nucleation barrier is illustrated in Fig. 18 for the capillarity or sharp interface
analysis [48–52]. The work to form a nucleus of size r, ∆G(r), is given by a term
to create the interface and volume free energy reduction from transformation as

∆G(r) = −12πr2σLS + 4πr3∆G∗

3kBT
(27)

The magnitude of the barrier is bσ3
LS/(3∆G

2
v) and occurs at the critical size r∗ =

2σLS/∆Gv where σLS is the liquid-solid interfacial energy, ∆Gv is the driving
free energy for nucleation of a unit volume of product phase and b = 16π/3

 0

∆G
(r

)

1 2 3

r[- σ/∆Gv]-1

 4πr
2σ

 4πr
2σ+4πr

3∆Gv/3

 4πr
3∆Gv/3

Fig. 18. The free energy change associated with homogeneous nucleation of a sphere
of radius r.



Nanostructured Materials: Reaction Kinetics and Stability 243

for spherical nuclei. Nucleation is a fluctuational growth process in cluster size
space so that the current of clusters or the nucleation rate is the result of both
single atom addition and removal from the evolving cluster. At high driving free
energy the nucleation rate is represented well by the forward flux as the product
of three terms: the number of cluster surface sites, the jump frequency and a
cluster concentration given by [11,16]

J(T ) =
4πr∗2

a2
0

Dl

a2
0
C(1) exp

[
−∆G∗

kBT

]
(28)

where a0 is the jump distance, Dl is the diffusivity, C(1) exp[−∆G∗/kBT ] is
the concentration of critical clusters, C(n∗), in a system with a monomer con-
centration of C(1). The main features of the nucleation rate kinetics can be
described by

Js
i = Ωi exp

[
−∆G∗f(θ)

kBT

]
(29)

where Js
i is the steady state nucleation rate on a volume (i = v) or surface basis

(i = a). Respective values for the prefactor, Ωi, activation barrier, ∆G∗, and the
contact angle function, f(θ), are used in (28) and kBT is the thermal energy.
With planar catalytic sites and spherical nuclei f(θ) = [2−3 cos(θ)+cos(3θ)]/4.
The expressions forΩi involve a product of a nucleation site density on a catalytic
surface or volume basis, the number of atoms on a nucleus surface and a jump
frequency. For most cases, Ωv = 1030/η cm−3s−1 and Ωa = φ1022/η cm−2s−1

with η, the liquid shear viscosity (in poise) given by [12]

η = 10−3.3 exp
[

3.34TL

T − Tg

]
(30)

in terms of the liquidus temperature, TL and the glass transition, Tg and φ, the
fraction of active catalytic sites. Following the establishment of a supersaturation
or undercooling, there is an initial time period during which the nucleation
cluster population evolves towards the steady state distribution. During this
transient period the time dependent nucleation rate, Ji(t), is given by [51,53]

Ji(t) = Js
i

[
1 + 2Σ(−1)n exp

(
−n2t

τ

)]
(31)

where τ is the time lag or delay time that is estimated by r∗2/π2Dl. In order to
achieve a nanocrystalline microstructure (i.e. with a size scale ≤ 100 nm) in a
fully crystallized volume, the nucleation number density should be at least of the
order of 1021 m−3. Of course, nanocrystallization can be achieved only if there
are also restrictions on the kinetics of nanocrystal growth following nucleation.

The kinetic analysis of growth follows different forms that depend on the
nature of the solute partitioning associated with phase growth. For example,
during polymorphous transformation without solute redistribution, the growth
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rate, V , is controlled by interface attachment limited kinetics as represented
by [10,52]

V = V0 exp
[
−QD

RT

](
1 − exp

[
∆Gv

RT

])
(32)

where V0 is a prefactor of the order of 5 × 103 m/s and QD is the activation
energy for interface jumps. At low temperature where ∆Gv � RT growth is
diffusion controlled as expressed by [42]

V = V0 exp
[
−QD

RT

]
(33)

For the case of eutectic reaction where the solute redistribution is limited to the
reaction interface [42]

V ∼= 4D̃I
δ

λ2 (34)

where D̃I is the interface diffusivity, δ is the thickness of the reaction front and λ
is the lamellar spacing. With these kinetic modes, the reaction is relatively rapid
and a metastable microstructure based upon nanocrystals and an amorphous
phase with the original composition is possible if the kinetics of subsequent
decomposition reactions to a more stable phase constitution is sluggish.

When growth requires a redistribution of solute as in primary crystallization,
the kinetics are limited by the rate of diffusion of the rejected solute into the
amorphous matrix. For evolving nanocrystals that are isolated from each other
the growth rate has the following form [10]

V =
α

2

√
D

t
(35)

where α is a dimensionless factor that is evaluated from the compositions at
the particle/matrix interface and the average composition and D will be con-
trolled by the slowest diffusing solute in a multicomponent alloy. However, at
high nucleation densities the isolation can be lost as the diffusion fields from
neighboring nanocrystals begin to overlap (i.e. soft impingement). Under this
condition there is a kinetic inhibition to further growth. Concurrent with the
growth of nanocrystals, the highly refined sizes indicate that capillarity effects
such as Ostwald ripening due to curvature driven transport (i.e. Gibbs Thomson
effect) can be important.

5 Nanocrystallization of Amorphous Alloys

Following amorphization by melt quenching a number of metallic glasses do
exhibit a clear glass transition signal, Tg, upon reheating. It is useful to note that
the glass transition is not a phase transformation in a thermodynamic sense, but
it is a kinetic manifestation of the slowing down of atomic transport in the liquid
with cooling [55]. In fact, the calorimetric glass transition signal is due to the
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Fig. 19. TEM bright-field images from an Al88Y7Fe5 melt-spun ribbon that was iso-
thermally annealed at 245◦C for (a) ten minutes; (b) 30 minutes; (c) 100 minutes and
(d) continuous heating DSC trace at 40 K/min showing a primary crystallization onset
at 276◦C.

large change in heat capacity that occurs when a liquid becomes configurationally
frozen. The slowing down of atomic transport is also reflected by an increase
in liquid viscosity. The time for the liquid structure to relax during cooling is
related to the viscosity and for typical laboratory measurement conditions Tg

corresponds to a viscosity in the range of 1012 − 10−13 poise (1011 − 1012 Pa-s).
Other amorphous alloys such as the marginal glass forming alloys do not show

a clear Tg signal [56]. Instead, initial exothermic maxima are observed to develop
that indicate a multiple stage crystallization [54,57] as shown in Fig. 19 for an
amorphous Al88Y7Fe5 ribbon after melt spinning and after initial crystallization.
The microstructural analysis has established that for many Al-base alloys the
initial crystallization corresponds to primary phase formation (i.e. Al) yielding a
sample that contains a high density of nanocrystals within an amorphous matrix
[58]. This behavior is of importance in understanding the kinetic control of glass
formation. The two basic strategies to synthesize amorphous alloys are illust-
rated schematically in Fig. 20. With nucleation control, the undercooling that
is achieved during cooling bypasses the nucleation reaction and the nucleation
size distribution [45], C(n) that may be retained by the cooling does not overlap
with the critical nucleation size, n∗ at the crystallization temperature, Tx. As
a result, there is no precursor reaction to influence the evolution of crystalline
clusters during subsequent thermal treatment. In this way, a clear separation in
temperature between the Tg and Tx signals can be observed during reheating of
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Fig. 20. The principal forms of kinetic control for metallic glass formation.

a glass. These kinetic conditions are the basis for bulk glass formation during
slow cooling [41]. During isothermal annealing at Tx, the heat evolution rate
exhibits a clear delay before the onset of the nucleation reaction and a peak ma-
ximum associated with the completion of nucleation and continued growth. On
the other hand, under growth control conditions the cooling rate is insufficient to
bypass the nucleation onset completely so that some small fraction of crystallites
may form initially, but the rapidly rising viscosity and falling growth rate with
continued cooling near Tg prevents rapid cluster growth. In addition, the clu-
ster size distribution that is retained overlaps in size with the critical nucleation
size at Tx. In this case as indicated in Fig. 20, upon reheating a sample with
pre-existing crystallites (i.e. quenched-in nuclei), rapid crystallization due to the
development of quenched-in clusters as well as additional nucleation ensues at
Tx which will essentially coincide with Tg.

While many of the early metallic glass alloys were synthesized under growth
controlled conditions (i.e. marginal glass formers) [59] the primary crystalliza-
tion particle densities in these alloys are of the order of 1018 m−3. For the class
of amorphous Al and Fe base glasses, the primary crystallization number den-
sities range from 1021 up to almost 1023 m−3. Both of the basic mechanisms
for glass formation that are outlined in Fig. 20 can yield a high number density
of nanocrystals upon devitrification. With nucleation control, nanostructure de-
velopment can be achieved by controlled reheating, since the maximum in the
growth rate typically occurs at a higher temperature than the maximum in the
nucleation rate. The different synthesis routes that are shown in Fig. 20 originate
from the relative time scale for the onset of nucleation and melt cooling. The
transition from growth control to nucleation control can be achieved either by
and increase in the cooling rate or by lengthening the time for onset of nucleation,
tn. Since tn is related to atomic transport in the liquid, it is evident that liquids
with high viscosity (i.e. strong liquids [55]) are favored for bulk glass formation.
It is also apparent that tn can be lengthened by removing active nucleation sites
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from the melt [60]. In fact, this is the basis for the effectiveness of melt fluxing,
which has been shown to promote bulk glass formation. The actual mechanism
for the development of the ultra high number densities of nanocrystals is under
active study and proposals based upon homogeneous [61] and heterogeneous [57]
nucleation and precursor phase separation reaction [62] are under examination.

The attainment of nanocrystal dispersions of essentially pure Al with ul-
trahigh number densities is a critical component of the attractive structural
performance, but an equally important characteristic is the high thermal sta-
bility. One indication of this stability is the wide temperature range between
the primary crystallization and final crystallization of between 75 − 100◦C in
Fig. 19. Within this range, there is a metastable two-phase coexistence invol-
ving the Al nanocrystals and the surrounding amorphous matrix with limited
coarsening of the microstructure. The sluggish kinetics is related at least in part
to the large differences in component atom sizes and diffusivities as well as the
onset of impingement of the diffusion fields from neighboring nanocrystals [54].
Indeed, even at a particle density of 1021 m−3 the average nanocrystal separation
is only about 100 nm. It is also evident that in order for the Al nanocrystals to
grow, there is a rejection of solute (i.e. TM and RE) as is typical for primary
crystallization reactions. The low solute diffusivities, especially for the large RE
atom, act to limit the growth and the transport is limited further by the redu-
ced concentration gradient due to impingement as indicated by the asymmetric
primary crystallization exotherm in Fig. 19. This kinetic restriction inhibits fur-
ther nanocrystal growth and accounts for the asymmetric crystallization peak
and the remarkable thermal stability. In fact, since the amorphous matrix com-
position will also be enriched in TM and RE components, it is possible to use
the solute redistribution during primary crystallization to enhance the stability
of the amorphous matrix (i.e. raise Tg )[63].

6 Summary

An important theme in many of the contemporary modeling strategies of mate-
rials behavior is the development of scaling relations. For example, specific pro-
perty scales allow for density compensated comparisons of properties. Similarly,
appropriate ratios of characteristic parameters are often useful in formulating
indices or metrics (dimensionless groups) to gage different regimes of operating
conditions or performance for particular design conditions. For nanostructured
materials the key scaling is in terms of the specific interface area (A/V) that is of-
ten represented by an interface curvature. Within the scope of available coverage
a number of cases or examples have been developed to illustrate the value of this
scaling. The thermodynamics underlying this scaling is clear, but as the single
digit nanometer scale is reached the macroscopic representation of properties
that are implicit in the scaling, such as the interfacial energy, can no longer
be expected to apply without some modification. The study of nanostructured
materials is a rich area where there is probably much more to learn than what
is known at present. This is also an area where computational approaches can



248 J.H. Perepezko

have significant and immediate impact. The small number of atoms allows for an
extended duration of analysis within the existing (but always growing) computer
power. At the same time the critical role of direct experimental studies that has
been responsible for many of the new discoveries of nanostructured materials
behavior and has provided unique insight to understanding novel behavior, will
continue to be at the forefront.
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